https://www.selleckchem.com/products/VX-680(MK-0457).html ia sp. strain SJ98 but instead enables its degradation of 4-nitrocatechol via BT. The presence of pnpG genes broadens the range of growth substrates to include 4-nitrocatechol or BT, intermediates from the microbial degradation of many aromatic compounds in natural ecosystems. In addition, the existence of pnpCDEFG in 11.6% of the above-mentioned two genera suggests that the ability to degrade BT and HQ simultaneously is ancient. The extension of BT and HQ pathways including 4-nitrophenol degradation seems to be an adaptive evolution for responding to synthetic nitroaromatic compounds entering the environment since the industrial revolution.Nitric oxide (NO) is an important signaling molecule in eukaryotic and prokaryotic cells. A previous study revealed an NO synthase-independent NO production metabolic cycle in which the three nitrogen oxides, nitrate (NO3-), nitrite (NO2-), and NO, were generated in the actinobacterium Streptomyces coelicolor A3(2). NO was suggested to act as a signaling molecule, functioning as a hormone that regulates secondary metabolism. Here, we demonstrate the NO-mediated regulation of the production of the blue-pigmented antibiotic actinorhodin (ACT), via the heme-based DevS/R two-component system (TCS). Intracellular NO controls the stabilization or inactivation of DevS, depending on the NO concentration. An electrophoretic mobility shift assay and chromatin immunoprecipitation-quantitative PCR analysis revealed the direct binding between DevR and the promoter region of actII-ORF4, resulting in gene expression. Our results indicate that NO regulates the DevS/R TCS, thereby strictly controlling the secondary metabolism of S. coelicolor A3(2). IMPORTANCE Diverse organisms, such as mammals, plants, and bacteria, utilize NO via well-known signal transduction mechanisms. Many useful secondary metabolite-producing bacteria of the Streptomyces genus had been also suggested for the metabol