https://www.selleckchem.com/products/relacorilant.html Cell-ID is distributed as an open-source R software package.Despite substantial progress in single-cell RNA-seq (scRNA-seq) data analysis methods, there is still little agreement on how to best normalize such data. Starting from the basic requirements that inferred expression states should correct for both biological and measurement sampling noise and that changes in expression should be measured in terms of fold changes, we here derive a Bayesian normalization procedure called Sanity (SAmpling-Noise-corrected Inference of Transcription activitY) from first principles. Sanity estimates expression values and associated error bars directly from raw unique molecular identifier (UMI) counts without any tunable parameters. Using simulated and real scRNA-seq datasets, we show that Sanity outperforms other normalization methods on downstream tasks, such as finding nearest-neighbor cells and clustering cells into subtypes. Moreover, we show that by systematically overestimating the expression variability of genes with low expression and by introducing spurious correlations through mapping the data to a lower-dimensional representation, other methods yield severely distorted pictures of the data.CRISPR screens have been used to connect genetic perturbations with changes in gene expression and phenotypes. Here we describe a CRISPR-based, single-cell combinatorial indexing assay for transposase-accessible chromatin (CRISPR-sciATAC) to link genetic perturbations to genome-wide chromatin accessibility in a large number of cells. In human myelogenous leukemia cells, we apply CRISPR-sciATAC to target 105 chromatin-related genes, generating chromatin accessibility data for ~30,000 single cells. We correlate the loss of specific chromatin remodelers with changes in accessibility globally and at the binding sites of individual transcription factors (TFs). For example, we show that loss of the H3K27 methyltransferase EZH2 increase