https://www.selleckchem.com/products/bms-986278.html The A2Σ+-X2Π electronic transition of the nitrous oxide cation, N2O+, was measured via photodissociation spectroscopy in a cryogenic electrostatic ion storage ring. Rotationally resolved spectra of the N-O stretching vibrational sequence were obtained by detecting neutral N fragments produced via N2O+ → NO+ + N predissociation channels. A new set of molecular constants was determined for the high-lying vibrational levels of the A2Σ+ state.We examine the Sastry (athermal cavitation) transitions for model monatomic liquids interacting via Lennard-Jones as well as shorter- and longer-ranged pair potentials. Low-temperature thermodynamically stable liquids have ρ ρS liquids emerge is ∼0.84ϵ/kB for Lennard-Jones liquids; T* decreases (increases) rapidly with increasing (decreasing) pair-interaction range. In particular, for short-ranged potentials, T* is above the critical temperature. All liquids' inherent structures are isostructural (isomorphic) for densities below (above) the Sastry density ρS. Overall, our results suggest that the barriers to cavitation in most simple liquids under ambient conditions for which significant cavitation is likely to occur are primarily vibrational-energetic and entropic rather than configurational-energetic. The most likely exceptions to this rule are liquids with long-ranged pair interactions, such as alkali metals.Threshold photodetachment spectroscopy has been performed on the molecular anion CN- at both 16(1) K and 295(2) K in a 22-pole ion trap and at 295(2) K from a pulsed ion beam. The spectra show a typical energy dependence of the detachment cross section yielding a determination of the electron affinity of CN to greater precision than has previously been known at 31 163(16) cm-1 [3.864(2) eV]. Allowed s-wave detachment is observed for CN-, but the dependence of the photodetachment cross section near the threshold is perturbed by the long-range interaction between the permane