https://www.selleckchem.com/JAK.html Background New approaches are urgently needed to fight influenza viral infection. Previous research has shown that zirconia nanoparticles can be used as anticancer materials, but their antiviral activity has not been reported. Here, we investigated the antiviral effect of zirconia (ZrO2) nanoparticles (NPs) against a highly pathogenic avian influenza virus. Materials and Methods In this study, the antiviral effects of ZrO2 on H5N1 virus were assessed in vivo, and the molecular mechanism responsible for this protection was investigated. Results Mice treated with 200 nm positively-charged NPs at a dose of 100 mg/kg showed higher survival rates and smaller reductions in weight. 200 nm ZrO2 activated mature dendritic cells and initially promoted the expression of cytokines associated with the antiviral response and innate immunity. In the lungs of H5N1-infected mice, ZrO2 treatment led to less pathological lung injury, significant reduction in influenza A virus replication, and overexpression of pro-inflammatory cytokines. Conclusion This antiviral study using zirconia NPs shows protection of mice against highly pathogenic avian influenza virus and suggests strong application potential for this method, introducing a new tool against a wide range of microbial infections. © 2020 Huo et al.Background Graphene and its derivatives have recently gained popularity in the biomedical field. Previous studies have confirmed that both the mechanical strength and wear resistance of graphene-containing polyethylene have been greatly improved. Therefore, it is being considered as an alternative for artificial joint replacement liners. Based on the literature, the wear debris generated from the traditional polymers used for orthopedic liners could lead to particle-induced osteolysis and, consequently, failure of joint replacement. However, the biological response of this novel graphene-based polymer is still unclear. Therefore, the current study aim