Type II intramolecular cycloadditions ([4+2], [4+3], [4+4] and [5+2]) have emerged recently as an efficient and powerful strategy for the construction of bridged ring systems. In general, type II cycloadditions provide access to a wide range of bridged bicyclo[m.n.1] ring systems with high regio- and diastereoselectivity in an easy and straightforward manner. In each section of this review, an overview of the corresponding type II cycloadditions is presented, which is followed by highlights of method development and synthetic applications in natural product synthesis. The goal of this review is to provide a survey of recent advances in the field covering literature up to 2020. The review will serve as a useful reference for organic chemists engaged in the total synthesis of natural products containing bridged bicyclo[m.n.1] ring systems and provide strong stimulus for invention and further advances in this exciting research field.Thermodynamic models of solid solutions used in computational thermochemistry have not been modernized in recent years. With the advent of fast and cheap computers, it is nowadays possible to add, at a minimal computational cost, physical ingredients such as coordination numbers, inter-atomic distances and classical interatomic potentials to the function describing the energetics of ordered and disordered solid solutions. As we show here, the integration of these elements into a robust statistical thermodynamic model of solution establishes natural connections with other deterministic and stochastic atomistic methods such as Monte Carlo and molecular dynamics simulations. Ultimately, all these numerical approaches need to be self-consistent and generate complementary sets of numerical thermo-physical properties. The present work proposes a new formalism to define the Gibbs free energy of ordered and disordered solid solutions. It allows for a complete prediction of the thermal, volumetric and compositional dependence of the Gibbs free energy by solving a constrained minimization problem. As a proof of concept, we explore the energetic behavior of pure face-centered cubic gold as well as the AuCu L10 ordered solution as a function of both temperature and pressure. https://www.selleckchem.com/products/ici-118551-ici-118-551.html We finally compare these results with the average properties obtained from classical molecular dynamics simulations and explain the origin of the existing differences between the two approaches based on how the temperature is accounted for in each method.Bisphenol A (BPA) is used as a stabilizing agent in many food packaging plastics and is a known endocrine-disrupting chemical that can alter the development of mammary glands, affect egg cells, and cause chromosomal defects. However, the pretreatment of traditional assays for detecting BPA is difficult. In this work, a novel aptamer functionalized magnetic adsorbent was developed and combined with magnetic solid-phase extraction (MSPE) for the selective enrichment of BPA. First, magnetic silica-coated Fe3O4 microspheres (Fe3O4@SiO2) were synthesized by the sol-gel method, and functional magnetic nanoparticles (Fe3O4@SiO2@Apt) were formed by modifying with nucleic acids. In the presence of BPA in a MSPE system, the nucleic acid aptamer can specifically capture the target BPA. After magnetic separation, the Apt/BPA composite was eluted, and we observed enhanced fluorescence with the Apt/BPA composite that was formed. Our results showed that this method allowed a limit of detection of 0.05 ng mL-1.Defect engineering is increasingly recognized as a viable strategy for boosting the performance of photoelectrochemical (PEC) water splitting using metal oxide-based photoelectrodes. However, previously developed methods for generating point defects associated with oxygen vacancies are rather time-consuming. Herein, high density oxygen deficient α-Fe2O3 with the dominant (110) crystal plane is developed in a very short timescale of 10 minutes by employing aerosol-assisted chemical vapor deposition and pure nitrogen as a gas carrier. The oxygen-defective film exhibits almost 8 times higher photocurrent density compared to a hematite photoanode with a low concentration of oxygen vacancies which is prepared in purified air. The existence of oxygen vacancies improves light absorption ability, accelerates charge transport in the bulk of films, and promotes charge separation at the electrolyte/semiconductor interface. DFT simulations verify that oxygen-defective hematite has a narrow bandgap, electron-hole trapped centre, and strong adsorption energy of water molecules compared to pristine hematite. This strategy might bring PEC technology another step further towards large-scale fabrication for future commercialization.An unprecedented triple catalytic, general ring-opening cyanation reaction of cyclopropyl ketones for the construction of γ-cyanoketones is described. The key is to merge photoredox catalysis with Lewis acid catalysis and copper catalysis to enable the selective cleavage of the carbon-carbon bonds and the selective coupling of the generated radical and cyanide anion.As an important and universal tumor marker, the reliable and in situ detection of intracellular telomerase activity is crucial for cancer diagnosis. Herein, a ratiometric fluorescence resonance energy transfer (FRET) method was developed for detecting intracellular telomerase activity. It takes full advantage of manganese dioxide nanosheets (MnO2NS) that can carry DNA probes with different conformations into cells and then completely release the DNA probes via decomposition of MnO2NS by intracellular reduced glutathione (GSH). In the presence of telomerase, a telomere substrate (TS) could be extended to form long telomerase extension products (TEPs), which trigger the cycling strand displacement reaction (SDR) between two fluorophore-labeled hairpin DNA probes to form lots of DNA duplexes. The close contact of two fluorophores led to an effective ratiometric FRET for reliable detection of telomerase activity. Fluorescence confocal imaging demonstrated that the activity of telomerase in tumor cells was reliably detected. The inhibition of telomerase activity by an inhibitor resulted in a decrease in FRET signal. For extracellular detection, the FRET ratio (FA/FD) shows a good linear relationship with the number of HeLa cells in the range of 20-1000 cells. Therefore, it offers a more facile method for reliable and sensitive detection of intracellular telomerase activity.