https://www.selleckchem.com/peptide/angiotensin-ii-human-acetate.html Biogenic microtubular iron oxides (BIOXs) derived from Leptothrix spp. are known as promising multifunctional materials for industrial applications such as ceramic pigments and catalyst carriers. Here, we report unprecedented BIOX products with additive depositions of various metallic elements prepared by a newly devised "two-step" method using an artificial culture system of Leptothrix cholodnii strain OUMS1; the method comprises a biotic formation of immature organic sheaths and subsequent abiotic deposition of Fe and intended elements on the sheaths. Chemical composition ratios of the additional elements Al, Zr, and Ti in the respective BIOXs were arbitrarily controllable depending on initial concentrations of metallic salts added to reaction solutions. Raman spectroscopy exemplified an existence of Fe-O-Al linkage in the Al-containing BIOX matrices. Time-course analyses revealed the underlying physiological mechanism for the BIOX formation. These results indicate that our advanced method can contribute greatly to creations of innovative bioderived materials with improved functionalities.Reducing chlorine corrosion to metals at high temperatures is a big problem for many industrial processes. Some high Ni alloys such as Hastelloy C-276 (Ni > 50 wt %) have been widely used for this purpose. Chlorine and chlorides often coexisted in many industrial processes at high temperatures, such as some industrial incinerators and metallurgical furnaces. Thus, a comprehensive experimental investigation regarding the effect of NaCl on the chlorination corrosion of metallic nickel powder by chlorine at a high temperature was performed. It was more convenient to investigate the intrinsic chlorination mechanisms and kinetics of metallic Ni if Ni powder was used instead of a Ni plate. It was found that there existed a critical chlorination temperature of 450 °C for relative safe use of Ni-based alloy in the pres