https://www.selleckchem.com/products/cq31.html The proposed network is tested on a clinical skin OCT data set and an open-access retinal OCT dataset. The results show that the proposed external attention mechanism can suppress invalid features and enhance significant features in our tasks. For all tests, the proposed SR network outperformed the traditional image interpolation method, e.g. bi-cubic method, and the state-of-the-art image super-resolution networks, e.g. enhanced deep super-resolution network, residual channel attention network, and second-order attention network. The proposed method may increase the quantitative clinical assessment of micro-vascular diseases which is limited by OCT imaging device resolution.Purpose.Recent studies suggest ultra-high dose rate (FLASH) irradiation can spare normal tissues from radiotoxicity, while efficiently controlling the tumor, and this is known as the 'FLASH effect'. This study performed theoretical analyses about the impact of radiolytic oxygen depletion (ROD) on the cellular responses after FLASH irradiation.Methods.Monte Carlo simulation was used to model the ROD process, determine the DNA damage, and calculate the amount of oxygen depleted (LROD) during FLASH exposure. A mathematical model was applied to analyze oxygen tension (pO2) distribution in human tissues and the recovery of pO2after FLASH irradiation. DNA damage and cell survival fractions (SFs) after FLASH irradiation were calculated. The impact of initial cellular pO2, FLASH pulse number, pulse interval, and radiation quality of the source particles on ROD and subsequent cellular responses were systematically evaluated.Results.The simulated electronLRODrange was 0.38-0.43μM Gy-1when pO2ranged from 7.5 to 160 mmHg. The calculated DNA damage and SFs show that the radioprotective effect is only evident in cells with a low pO2. Different irradiation setups alter the cellular responses by modifying the pO2. Single pulse delivery or multi-pulse delivery with