Therefore, compound DC-K2in212 could serve as a potential CDK2 inhibitor for further development.Colchicine shows very high antimitotic activity, therefore, it is used as a lead compound for generation of new anticancer agents. In the hope of developing novel, useful drugs with more favourable pharmacological profiles, a series of doubly modified colchicine derivatives has been designed, synthesized and characterized. These novel carbamate or thiocarbamate derivatives of 10-demethoxy-10-methylaminocolchicine have been tested for their antiproliferative activity against four human cancer cell lines. Additionally, their mode of action has been evaluated as colchicine binding site inhibitors, using molecular docking studies. Most of the tested compounds showed greater cytotoxicity (IC50 in a low nanomolar range) and were characterized by a higher selectivity index than standard chemotherapeutics such as cisplatin and doxorubicin as well as unmodified colchicine. https://www.selleckchem.com/products/gpr84-antagonist-8.html Their pharmacological use in cancer therapy could possibly be accomplished with lower dosages and result in less acute toxicity problems than in the case of colchicine. In addition, we present a QSAR model for predicting the antiproliferative activity of doubly modified derivatives for two tumour cell lines.53 New drugs including 38 chemical entities and 15 biologics were approved by the U.S. Food and Drug Administration during 2020. Among the marketed drugs, 34 new small molecule drugs and 4 new diagnostic agents with privileged structures and novel clinical applications represent as promising leads for the development of new drugs with the similar indications and improved therapeutic efficacy. This review is mainly focused on the clinical applications and synthetic methods of 34 small-molecule drugs newly approved by the FDA in 2020.Covalent drugs have been intensively studied in some very important fields such as anti-tumor and anti-virus, including the currently global-spread SARS-CoV-2. However, these drugs may interact with a variety of biological macromolecules and cause serious toxicology, so how to reactivate the inhibited targets seems to be imperative in the near future. Organophosphate was an extreme example, which could form a covalent bound easily with acetylcholinesterase and irreversibly inhibited the enzyme, causing high toxicology. Some nucleophilic oxime reactivators for organophosphate poisoned acetylcholinesterase had been developed, but the reactivation process was still less understanding. Herein, we proposed there should be a pre-reactivated pose during the reactivating process and compounds whose binding pose was easy to transfer to the pre-reactivated pose might be efficient reactivators. Then we refined the previous reactivators based on the molecular dynamic simulation results, the resulting compounds L7R3 and L7R5 were proven as much more efficient reactivators for organophosphate inhibited acetylcholinesterase than currently used oximes. This work might provide some insights for constructing reactivators of covalently inhibited targets by using computational methods.The total synthesis of berberine and selected analogues. And their evaluation as amyloid β (Aβ) aggregation inhibitors is described. The key step in the synthesis, the assembly of the berberine framework, was accomplished using an intermolecular Heck reaction. Berberine analog 17 incorporating a tertiary amine moiety showed good anti Aβ aggregation activity, water solubility, and almost no toxicity to nerve cells.Development of the drug with high therapeutic efficacy and low toxicity is crucial to cancer ablation. In this study, we have demonstrated a red light-responsive prodrug BDP-TK-CPT by connecting the chemotherapeutic agent camptothecin with a boron dipyrromethene (BDP)-based photosensitizer via a reactive oxygen species (ROS)-labile thioketal chain. Since camptothecin is modified by a BDP-based macrocycle at the active site, the formed prodrug displays an extremely low toxicity in dark. However, upon illumination by red light, it can efficiently generate ROS leading to cell death by photodynamic therapy. Meanwhile, the ROS generated can destroy thioketal group to release free camptothecin which further results in local cell death by chemotherapy. The combined antitumor effects of the prodrug have been verified in HepG2, EC109, and HeLa cancer cells and mice bearing H22 tumors. This study may provide an alternative strategy for stimuli-responsive combination treatment of tumors by conjugation of ROS-activatable prodrugs with photosensitizing agents.A series of novel amphiphilic paclitaxel (PTX) small molecule prodrugs, PTX-succinic anhydride-cystamine (PTX-Cys), PTX-dithiodipropionic anhydride (PTX-SS-COOH) and PTX-succinic anhydride-cystamine-valine (PTX-SS-Val) were designed, synthesized and evaluated against cancer cell lines. Compared with paclitaxel, these prodrugs contained water-soluble groups such as amino, carboxyl and amino acid, which improved the aqueous solubility of the prodrugs. More importantly, the valine was introduced in PTX-SS-Val molecule and made the molecule conform to the structural characteristics of intestinal oligopeptide transporter PEPT1 substrate. Thus the oral bioavailability of prodrug could be improved because of the mediation of PEPT1 transporter. These small molecule paclitaxel prodrugs could self-assemble into nanoparticles in aqueous solution, which effectively improved the solubility of paclitaxel, and had certain stability in pH 6.5, pH 7.4 buffer solutions and simulated gastrointestinal fluids. Some of these prodrugs, especially for PTX-Cys and PTX-SS-Val, exhibited nearly equal or slightly better anticancer activity when compared to paclitaxel. Further studies on PTX-Cys and PTX-SS-Val showed that both had good intestinal absorption in the rat single-pass intestinal perfusion (SPIP) experiments. Oral pharmacokinetic experiments showed that PTX-SS-Val could effectively improve the oral bioavailability of PTX.Human cytochrome P450 enzyme CYP4Z1 represents a promising target for the treatment of a multitude of malignancies including breast cancer. The most active known non-covalent inhibitor (1-benzylimidazole) only shows low micromolar affinity to CYP4Z1. We report a new, highly active inhibitor for CYP4Z1 showing confirmed binding in an enzymatic assay and an IC50 value of 63 ± 19 nM in stably transfected MCF-7 cells overexpressing CYP4Z1. The new inhibitor was identified by a systematically developed virtual screening protocol. Binding was rationalized using a carefully elaborated 3D pharmacophore hypothesis and thoroughly characterized using extensive molecular dynamics simulations and dynamic 3D pharmacophore (dynophore) analyses. This novel inhibitor represents a valuable pharmacological tool to accelerate characterization of the still understudied CYP4Z1 and might pave the way for a new treatment strategy in CYP4Z1-associated malignancies. The presented in silico model for predicting CYP4Z1 interaction provides novel mechanistic insights and revealed that the drug ozagrel interacts with CYP4Z1.