https://www.selleckchem.com/products/Verteporfin(Visudyne).html Single-molecule RNA fluorescence in situ hybridization (smFISH) allows subcellular visualization, localization, and quantification of endogenous RNA molecules in fixed cells. The spatial and intensity information of each RNA can be used to distinguish mature from nascent transcripts inside each cell, revealing both past and instantaneous transcriptional activity. Here, we describe an optimized protocol for smFISH in Saccharomyces cerevisiae with optimized lyticase digestion time and hybrization steps for more homogenous results. For complete details on the use and execution of this protocol, please refer to Donovan et al. (2019).Neonatal mouse cochlear duct cells can proliferate and grow in vitro into inner ear organoids. Distinctive cochlear duct cell types have different organoid formation capacities. Here, we provide a flow cytometric cell-sorting method that allows the subsequent culture of individual cochlear cell populations. For the efficient culture of the sorted cells, we provide protocols for growing free-floating inner ear organoids, the adherence of organoids to a substrate, and the expansion of organoid-derived inner ear colonies. For complete details on the use and execution of this protocol, please refer to Kubota et al. (2021).Co-immunoprecipitation (co-IP) of protein complexes from cell lysates is widely used to study protein-protein interactions. However, establishing robust co-IP assays often involves considerable optimization. Moreover, co-IP results are frequently presented in non-quantitative ways. This protocol presents an optimized co-IP workflow with an analysis based on semi-quantitative immunoblot densitometry to increase reliability and reproducibility. For complete details on the use and execution of this protocol, please refer to Burckhardt et al. (2021).In S. cerevisiae, we identified rhomboid pseudoprotease Dfm1 as the major mediator for removing or retrotranslocating mis