Psoriatic arthritis (PsA) is a chronic musculoskeletal inflammatory disease found in up to 30% of psoriasis patients. Prolargin-an extracellular matrix (ECM) protein present in cartilage and tendon-has been previously shown elevated in serum of patients with psoriasis. ECM protein fragments can reflect tissue turnover and pathological changes; thus, this study aimed to develop, validate and characterize a novel biomarker PROM targeting a matrix metalloproteinase (MMP)-cleaved prolargin neo-epitope, and to evaluate it as a biomarker for PsA. A competitive ELISA was developed with a monoclonal mouse antibody; dilution- and spiking-recovery, inter- and intra-variation, and accuracy were evaluated. Serum levels were evaluated in 55 healthy individuals and 111 patients diagnosed with PsA by the CASPAR criteria. Results indicated that the PROM assay was specific for the neo-epitope. Inter- and intra- assay variations were 11% and 4%, respectively. PROM was elevated (pā€‰=ā€‰0.0003) in patients with PsA (median 0.24, IQR 0.19-0.31) compared to healthy controls (0.18; 0.14-0.23) at baseline. AUROC for separation of healthy controls from PsA patients was 0.674 (95% CI 0.597-0.744, Pā€‰ less then ā€‰0.001). In conclusion, MMP-cleaved prolargin can be quantified in serum by the PROM assay and has the potential to separate patients with PsA from healthy controls.Antibiotics that interfere with translation, when combined, interact in diverse and difficult-to-predict ways. Here, we explain these interactions by "translation bottlenecks" points in the translation cycle where antibiotics block ribosomal progression. To elucidate the underlying mechanisms of drug interactions between translation inhibitors, we generate translation bottlenecks genetically using inducible control of translation factors that regulate well-defined translation cycle steps. These perturbations accurately mimic antibiotic action and drug interactions, supporting that the interplay of different translation bottlenecks causes these interactions. We further show that growth laws, combined with drug uptake and binding kinetics, enable the direct prediction of a large fraction of observed interactions, yet fail to predict suppression. However, varying two translation bottlenecks simultaneously supports that dense traffic of ribosomes and competition for translation factors account for the previously unexplained suppression. These results highlight the importance of "continuous epistasis" in bacterial physiology.Tryptophan catabolism by the enzymes indoleamine 2,3-dioxygenase 1 and tryptophan 2,3-dioxygenase 2 (IDO/TDO) promotes immunosuppression across different cancer types. The tryptophan metabolite L-Kynurenine (Kyn) interacts with the ligand-activated transcription factor aryl hydrocarbon receptor (AHR) to drive the generation of Tregs and tolerogenic myeloid cells and PD-1 up-regulation in CD8+ T cells. Here, we show that the AHR pathway is selectively active in IDO/TDO-overexpressing tumors and is associated with resistance to immune checkpoint inhibitors. We demonstrate that IDO-Kyn-AHR-mediated immunosuppression depends on an interplay between Tregs and tumor-associated macrophages, which can be reversed by AHR inhibition. Selective AHR blockade delays progression in IDO/TDO-overexpressing tumors, and its efficacy is improved in combination with PD-1 blockade. Our findings suggest that blocking the AHR pathway in IDO/TDO expressing tumors would overcome the limitation of single IDO or TDO targeting agents and constitutes a personalized approach to immunotherapy, particularly in combination with immune checkpoint inhibitors.One major bottleneck in natural product drug development is derivatization, which is pivotal for fine tuning lead compounds. A promising solution is modifying the biosynthetic machineries of middle molecules such as macrolides. https://www.selleckchem.com/products/Eloxatin.html Although intense studies have established various methodologies for protein engineering of type I modular polyketide synthase(s) (PKSs), the accurate targeting of desired regions in the PKS gene is still challenging due to the high sequence similarity between its modules. Here, we report an innovative technique that adapts in vitro Cas9 reaction and Gibson assembly to edit a target region of the type I modular PKS gene. Proof-of-concept experiments using rapamycin PKS as a template show that heterologous expression of edited biosynthetic gene clusters produced almost all the desired derivatives. Our results are consistent with the promiscuity of modular PKS and thus, our technique will provide a platform to generate rationally designed natural product derivatives for future drug development.The central role played by cerebrospinal-fluid (CSF) examinations including antineuronal autoantibody (Ab) testing is increasingly recognized in psychiatry. The rationale of this study was to present a multimodally investigated group of patients. In total, 992 patients were analyzed for CSF alterations 456 patients with schizophreniform and 536 with affective syndromes. Ab measurement included testing for established antineuronal IgG-Abs against intracellular antigens in serum (Yo/Hu/Ri/cv2[CRMP5]/Ma1/Ma2/SOX1/TR[DNER]/Zic4/amphiphysin/GAD65) and for cell surface antigens in the CSF (NMDAR/AMPA-1/2-R/GABA-B-R/LGI1/CASPR2/DPPX). In 30 patients with "red flags" for autoimmune psychosis, "tissue tests" were performed. Additional diagnostics included MRI and EEG analyses. CSF white-blood-cell counts were increased in 4% and IgG indices in 2%; CSF-specific oligoclonal bands were detected in 4%; overall, 8% displayed signs of neuroinflammation. In addition, 18% revealed increased albumin quotients. Antineuronal Abs against intracellular antigens were detected in serum in 0.6%. Antineuronal Abs against established cell surface antigens were detected in serum of 1% and in the CSF of 0.3% (CSF samples were only questionably positive). Abnormal IgG binding in "tissue tests" was detected in serum of 23% and in CSF of 27%. In total, 92% of the Ab-positive patients demonstrated at least one sign of brain involvement in additional diagnostics using CSF, MRI, EEG, and FDG-PET. In summary, CSF basic analyses revealed signs of blood-brain-barrier dysfunction and neuroinflammation in relevant subgroups of patients. Established antineuronal IgG-Abs were rare in serum and even rarer in the CSF. "Tissue tests" revealed frequent occurrences of Ab-binding; therefore, novel antineuronal Abs could play a relevant role in psychiatry.