https://www.selleckchem.com/products/vu0463271.html Due to the lack of early symptoms and difficulty of accurate diagnosis, ovarian cancer is the most lethal gynecological cancer faced by women. First-line therapy includes a combination of tumor resection surgery and chemotherapy regimen. However, treatment becomes more complex upon recurrence due to development of drug resistance. Drug resistance has been linked to many mechanisms, including efflux transporters, apoptosis dysregulation, autophagy, cancer stem cells, epigenetics, and the epithelial-mesenchymal transition. Thus, developing and choosing effective therapies is exceptionally complex. There is a need for increased specificity and efficacy in therapies for drug-resistant ovarian cancer, and research in targeted nanoparticle delivery systems aims to fulfill this challenge. Although recent research has focused on targeted nanoparticle-based therapies, few of these therapies have been clinically translated. In this review, non-viral nanoparticle delivery systems developed to overcome drug-resistance in ovarian cancer were analyzed, including their structural components, surface modifications, and drug-resistance targeted mechanisms.The major challenge of commercially available vascular substitutes comes from their limitations in terms of hydrophobic surface, which is hostile to cell growth. To date, tissue-engineered and synthetic grafts have not translated well to clinical trials when looking at small diameters. We conceptualized a cell-free structurally reinforced biodegradable vascular graft recapitulating the anisotropic feature of a native blood vessel. The nanofibrous scaffold is designed in such a way that it will gradually degrade systematically to yield a neo-vessel, facilitated by an immobilized bioactive molecule-vascular endothelial growth factor (VEGF). The nano-topographic cue of the device is capable of direct host cell infiltration. We evaluated the burst pressure, histology, hemocompatibilit