Brain weights following behavioral testing did not differ. The results reported here along with existing literature suggest sevoflurane is largely without effects on later cognition in adult rodents when exposure is of a relatively short duration and at a relatively low concentration.Quantitative reverse transcription polymerase chain reaction (RT-qPCR) is commonly used for gene expression analysis, and the accuracy of its results depends greatly on chosen reference genes. Adrenal gland is the core of the occurrence and development of fetal-originated adult diseases. Its dysplasia or dysfunction may increase susceptibility to adult disease, which has apparent sex differences. To explore the optimal combination of reference genes for RT-qPCR in female and male rats adrenal development, we selected seven reference genes (GAPDH, β-actin, etc.), and use RT-qPCR to detect genes expression during different stages of rats adrenal development under physiological conditions. Then we analysed data using GeNorm, NormFinder and BestKeeper to select the optimal combination of reference genes. https://www.selleckchem.com/products/ak-7.html Further, we used the intrauterine growth retardation (IUGR) model of rat caused by prenatal caffeine exposure (PCE) to verify the stability and accuracy of the selected combination of reference genes under physiological conditions. The results showed that TBP + β-actin could be the optimal combination of reference genes for fetal rat adrenals under physiological conditions, without obvious sex differences. In infancy and adolescence, the optimal combination of reference genes for adrenals had sex differences, and females were GAPDH + β-actin, while males were GAPDH + SDHA. In PCE model, the optimal combination of reference genes was consistent with physiological conditions. Using combination of reference genes to analyze target genes can improve the accuracy of the results. In summary, this study provided reliable combination of reference genes for RT-qPCR and experimental supports for researches on adrenal development.Dihydrotestosterone (DHT) is involved in the development of preantral follicles. However, the effect of DHT on the development of antral follicles has yet to be fully investigated. Herein, we used enzyme-linked immunosorbent assays, immunofluorescence assays, quantitative real time-polymerase chain reaction, immunohistochemical staining, and western blotting to investigate the effect of DHT on antral follicle development. First, we detected the concentration of DHT and the expression of the androgen receptor (AR) in different antral follicles. Second, multiple DHT concentration (10-10-10-7 M) were added to granulosa cells cultured in vitro to examine the influence of DHT on AR expression. Third, to study changes in the expression of oestrogen (E2) synthase and receptors during the development of antral follicles, we divided them according to their diameters into small (≤ 2 mm), medium (2-5 mm), and large (≥ 5 mm) groups. Fourth, we added DHT (10-8 M) and flutamide (Flu, 10-7 M) to granulosa cells to determine whether DHT regulates the expression of cytochrome P450 aromatase (CYP19A1) and the associated receptors through the AR pathway. Fifth, we tested the effect of DHT and Flu on the expression of apoptotic genes and proteins in granulosa cells. We found that AR was expressed in sheep antral follicle granulosa cells and was regulated by DHT. During antral follicle development, the concentration of E2 and the expression of CYP19A1 and E2 receptors significantly increased in granulosa cells. DHT influenced this increase, at least partially, through the AR. Moreover, DHT regulated the expression of apoptotic genes and proteins through the AR. Our study expands our knowledge on the regulatory mechanism of DHT in antral follicle development and guides further research on the androgen regulation of ovarian function. Though cholesterol accumulation is an established hallmark of a tumor cell, the relationship between the two is still not clear. Previously, we identified 3-Hydroxy-3-Methylglutaryl-CoA Reductase (HMGCR), Sterol Regulatory Element BindingTranscription Factor 2 (SREBF2), Nuclear Receptor Subfamily 1 Group H Member 3 (NR1H3), and Nuclear Receptor Subfamily 1 Group H Member 2 (NR1H2) as the key cholesterol homeostasis genes involved in colorectal cancer (CRC). In the present study, we aimed to identify microRNAs regulating these key genes in CRC. miR-18a-5p, miR-144-3p, and miR-663b were selected as the miRNAs targeting NR1H2, HMGCR, and SREBF2, respectively, based on the bioinformatic prediction tools and literature review. Their expression was evaluated in the local and The Cancer Genome Atlas (TCGA) cohorts. Receiver Operating Characteristic Curves and Kaplan Meier analysis were performed to elucidate their diagnostic and prognostic potential. Pearson or Spearman's correlations were used to evaluate the relationship between miRNAs and their target genes. Protein-protein interaction networks and Gene Ontology analyses were performed to investigate the potential molecular mechanism of these miRNAs. Deregulated expression of miR-18a-5p, miR-144-3p, and miR-663b was associated with various clinicopathological features. miR-18a-5p exhibited an inverse correlation with NR1H2. miR-18a-5p and miR-144-3p also had a significant direct correlation with miR-33a-5p, an important modulator of cholesterol homeostasis. These miRNAs also exhibited high centrality in the mirna-protein interaction network. miR-144-3p and miR-663b exhibited the potential to be used as diagnostic biomarkers. miR-18a-5p and miR-144-3p exhibited the potential to modulate cholesterol homeostasis in CRC. miR-663b is an interesting candidate in CRC pathophysiology. miR-18a-5p and miR-144-3p exhibited the potential to modulate cholesterol homeostasis in CRC. miR-663b is an interesting candidate in CRC pathophysiology.Progesterone is involved in dendritogenesis, synaptogenesis and maturation of cerebellar Purkinge cells, major sites of steroid synthesis in the brain. To study a possible time-relationship between myelination, neurosteroidogenesis and steroid receptors during development of the postnatal mouse cerebellum, we determined at postnatal days 5 (P5),18 (P18) and 35 (P35) the expression of myelin basic protein (MBP), components of the steroidogenic pathway, levels of endogenous steroids and progesterone's classical and non-classical receptors. In parallel with myelin increased expression during development, P18 and P35 mice showed higher levels of cerebellar progesterone and its reduced derivatives, higher expression of steroidogenic acute regulatory protein (StAR) mRNA, cholesterol side chain cleavage enzyme (P450scc) and 5α-reductase mRNA vs. P5 mice. Other steroids such as corticosterone and its reduced derivatives and 3β-androstanodiol (ADIOL) showed a peak increase at P18 compared to P5. Progesterone membrane receptors and binding proteins (PGRMC1, mPRα, mPRβ, mPRγ, and Sigma1 receptors) mRNAs levels increased during development while that of classical progesterone receptors (PR) remained invariable.