https://www.selleckchem.com/products/wnt-c59-c59.html This suggests typical basal ganglia dopamine release, but atypical recruitment of the orbitofrontal and dorsolateral prefrontal cortices. However, we found that these tasks have only fair to low test-retest reliability and thus may not be useful for assessing change over time in clinical trials. Our findings replicate previous literature showing spared implicit RL and impaired explicit reinforcement in psychosis. This suggests typical basal ganglia dopamine release, but atypical recruitment of the orbitofrontal and dorsolateral prefrontal cortices. However, we found that these tasks have only fair to low test-retest reliability and thus may not be useful for assessing change over time in clinical trials.Currently, all soft tissue sarcomas (STS) are irradiated by the same regimen, disregarding possible subtype-specific radiosensitivities. To gain further insight, cellular radiosensitivity was investigated in a panel of sarcoma cell lines. Fourteen sarcoma cell lines, derived from synovial sarcoma, leiomyosarcoma, fibrosarcoma and liposarcoma origin, were submitted to clonogenic survival assays. Cells were irradiated with single doses from 1-8 Gy and surviving fraction (SF) was calculated from the resulting response data. Alpha/beta (α/β) ratios were inferred from radiation-response curves using the linear-quadratic (LQ)-model. Cellular radiosensitivities varied largely in this panel, indicating a considerable degree of heterogeneity. Surviving fraction after 2 Gy (SF2) ranged from 0.27 to 0.76 with evidence of a particular radiosensitive phenotype in only few cell lines. D37% on the mean data was 3.4 Gy and the median SF2 was 0.52. The median α/β was 4.9 Gy and in six cell lines the α/β was below 4 Gy. A fairly homogeneous radiation response was observed in myxoid liposarcoma cell lines with SF2 between 0.64 and 0.67. Further comparing sarcomas of different origin, synovial sarcomas, as a group, showed the lowest