https://www.selleckchem.com/products/ws6.html Hepatocellular carcinoma is the fifth most common cancer worldwide and the second most lethal, following lung cancer. Currently applied therapeutic practices rely on surgical resection, chemotherapy and radiotherapy, or a combination thereof. These treatment options are associated with extreme adversities, and risk/benefit ratios do not always work in patients' favor. Anomalies of the epigenome lie at the epicenter of aberrant molecular mechanisms by which the disease develops and progresses. Modulation of these anomalous events poses a promising prospect for alternative treatment options, with an abundance of felicitous results reported in recent years. Herein, the most recent epigenetic modulators in hepatocellular carcinoma are recapitulated on. DNA methyltransferase 3 alpha (DNMT3A) mutation was one of the most frequent genetic alterations in acute myeloid leukemia (AML), which was associated with poor prognosis and appeared to be a potential biomarker. Herein, we aimed to identify the key genes and pathways involved in adult AML with DNMT3A mutations and to find possible therapeutic targets for improving treatment. The RNA sequencing datasets of 170 adult AML patients were obtained from The Cancer Genome Atlas (TCGA) database. EdgeR of the R platform was used to identify the differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed by Metascape and DAVID. And protein-protein interaction (PPI) network and clustering modules were analyzed with the STRING database and Cytoscape software. Mutated DNMT3A resulted in a shorter overall survival (OS) in AML patients and obviously associated with age, blast percentage in peripheral blood, and FLT3 mutation. A total of 283 DEGs were detected, of which 95 were upregulated and 188 were downregulated. GO term analysis showed that DEGs were significantly enriched in neutrophil degranulation, mye