https://www.selleckchem.com/products/uc2288.html Conclusion There is no evidence supporting the use of ACWR in training-load-management systems or for training recommendations aimed at reducing injury risk. The statistical properties of the ratio make the ACWR an inaccurate metric and complicate its interpretation for practical applications. In addition, it adds noise and creates statistical artifacts.Context Combat sports are composed of high-intensity actions (eg, attacks, defensive actions, and counterattacks in both grappling and striking situations depending on the specific sport) interspersed with low-intensity actions (eg, displacement without contact, stepping) or pauses (eg, referee stoppages), characterizing an intermittent activity. Therefore, high-intensity interval training (HIIT) is at the essence of combat-sport-specific training and is used as complementary training, as well. HIIT prescription can be improved by using intensity parameters derived from combat-sport-specific tests. Specifically, the assessment of physiological indexes (intensity associated with the maximal blood lactate steady state, maximal oxygen consumption, and maximal sprint) or of time-motion variables (high-intensity actions, low-intensity actions, and effortpause ratio) is a key element for a better HIIT prescription because these parameters provide an individualization of the training loads imposed on these athletes. Purpose To present a proposal for HIIT prescription for combat-sport athletes, exemplifying with different HIIT protocols (HIIT short intervals, HIIT long intervals, repeated-sprint training, and sprint interval training) using combat-sport-specific actions and the parameters for the individualization of these protocols. Conclusions The use of combat-sport-specific tests is likely to improve HIIT prescription, allowing coaches and strength and conditioning professionals to elaborate HIIT short intervals, HIIT long intervals, repeated-sprint training, and sprint in