End-of-life decisions are usually required when a neonate is at high risk of disability or death, and such decisions involve many legal and ethical challenges. This article reviewed the processes of ethical decision-making for severely ill or terminal neonates, considering controversial issues including the followings (i) identifying primary decision makers, (ii) the role of law and guidelines, and (iii) changes in treatment controversy, law and regulations over twenty years in several European countries such as Switzerland, Germany, Italy, United Kingdom, France, the Netherlands, Sweden, and Spain. This review study conducted on accessible articles from PubMed, Google Scholar, Web of Science and Scopus databases. Based on two studies in 2016 and 1996, neonatologists reported that withholding intensive care, withdrawing mechanical ventilation or life-saving drugs, and involvement of parents in decision-makings have become more acceptable as time passes, indicative of trend change. Trend of physicians on how end the life of neonates, at risk of death, varies in different countries, and cultural factors, parents' involvement in decisions and gestational age are factors considered in end-of-life decision-making. Future investigations continuously need to identify upcoming ethical aspects of proper decision-making.Assessment of scientific misconduct is considered to be an increasingly important topic in medical sciences. Providing a definition for scientific research misconduct and proposing practical methods for evaluating and measuring it in various fields of medicine discipline are required. This study aimed at assessing the psychometric properties of Scientific Research Misconduct-Revised (SMQ-R) and Publication Pressure Questionnaires (PPQ). https://www.selleckchem.com/products/jg98.html After translation and merging of these two questionnaires, the validity of the translated draft was evaluated by 11-member expert panel using Content Validity Index (CVI) and Content Validity Ratio (CVR). Reliability of the final questionnaire, completed by 100 participants randomly chosen from medical academic members, was assessed by calculating Cronbach's alpha coefficient. The final version was named Persian Research Misconduct Questionnaire (PRMQ) and consisted of 63 question items. The item-level content validity indices of 61 questions were above 0.79, and reliability assessment showed that 6 out of 7 subscales had alpha values higher than 0.6. Hence, PRMQ can be considered an acceptable, valid and reliable tool to measure research misconduct in biomedical sciences researches in Iran.Woesearchaeota as a newly established member of the superphylum DPANN (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota and Nanohaloarchaea) are surprisingly abundant and diverse in a wide variety of environments, including deep oil reservoir, sulfuric springs and anoxic aquifers, indicating a high diversity of their roles in global biogeochemical cycles. However, ecological functions of them remain elusive. To fill up this gap, we analyzed and compared the global distribution patterns of Woesearchaeota using the genomes available publicly. As a result, both ecological distribution patterns and metabolic predictions support a key role of woesearchaeotal lineages in cycling of carbon, nitrogen, and sulfur. Multivariate regression analysis reveals that Woesearchaeota might function in consortium with methanogens in the cycling of carbon in anaerobic environments, particularly in soils or sediments. Moreover, comparative genomic analysis and ecological distribution suggest the potential roles of Woesearchaeota in the processes of denitrification, nitrogen fixation, and dissimilatory nitrite reduction, especially in the wastewater treatment systems; and also uncovered the potential capability of sulfate reduction, sulfide oxidation and thiosulfate oxidation in sulfuric or sulfidic-rich environments. Our findings add more information into the ecological roles of archaea in the anoxic environment.There is a general expectation that the laws of classical physics must apply to biology, particularly the neural system. The evoked cycle represents the brain's energy/information exchange with the physical environment through stimulus. Therefore, the thermodynamics of emotions might elucidate the neurological origin of intellectual evolution, and explain the psychological and health consequences of positive and negative emotional states based on their energy profiles. We utilized the Carnot cycle and Landauer's principle to analyze the energetic consequences of the brain's resting and evoked states during and after various cognitive states. Namely, positive emotional states can be represented by the reversed Carnot cycle, whereas negative emotional reactions trigger the Carnot cycle. The two conditions have contrasting energetic and entropic aftereffects with consequences for mental energy. The mathematics of the Carnot and reversed Carnot cycles, which can explain recent findings in human psychology, might be constructive in the scientific endeavor in turning psychology into hard science.Antibiotic resistance is acquired in response to antibiotic therapy by activating SOS-depended mutagenesis and horizontal gene transfer pathways. Compounds able to inhibit SOS response are extremely important to develop new combinatorial strategies aimed to block mutagenesis. The regulators of homologous recombination involved in the processes of DNA repair should be considered as potential targets for blocking. This review highlights the current knowledge of the protein targets for the evolution of antibiotic resistance and the inhibitory effects of some new compounds on this pathway.Several factors in Western society, including widespread use of antibiotics, chronic inflammation, and loss of complex eukaryotic symbionts such as helminths, have a dramatic impact on the ecosystem of the gut, affecting the microbiota hosted there. In addition, reductions in dietary fiber are profoundly impactful on the microbiota, causing extensive destruction of the niche space that supports the normally diverse microbial community in the gut. Abundant evidence now supports the view that, following dramatic alterations in the gut ecosystem, microorganisms undergo rapid change via Darwinian evolution. Such evolutionary change creates functionally distinct bacteria that may potentially have properties of pathogens but yet are difficult to distinguish from their benign predecessors.