https://www.selleckchem.com/products/Etopophos.html Succinylcholine chloride (SCC) is a common poison that threatens human life. At present, there is a lack of research on its on-site rapid detection methods. In this work, the use of gold nanorods as an enhanced substrate based on the high affinity between the quaternary ammonium salt structure can achieve rapid SERS detection of SCC in plasma. The long alkane chain structure of cetyltrimethylammonium bromide (CTAB) and the quaternary ammonium salt structure of SCC have a high molecular affinity, so that the target molecule can show a strong and obvious characteristic signal of SERS. Combined with a simple pretreatment method, acetonitrile is used as a protein precipitation agent to effectively remove matrix interference. The constructed SERS substrate can achieve the sensitive detection of 2 × 10-8 M level of SCC in plasma samples and has high detection reproducibility. The entire pre-processing and testing process can be completed within 7 min, which can be used as an important technical basis for the preliminary identification of on-site SCC-related drug cases. The research results provide an effective solution for the establishment of SCC analysis strategies in complex matrices, and can provide new ideas for solving the problems of difficult identification of common poisons in the field and the lack of rapid detection methods on site.A novel selective fluorescent chemosensor, thiosemicarbazide-appended naphthalimide derivative (TND), has been designed and synthesized, which exhibited good selectivity and sensibility for Pb2+ in CH3CNH2O (11) solution. The probe TND showed obvious color changes under UV light of 365 nm and displayed turn-on fluorescence response with Pb2+ added. The binding mode of TND with Pb2+ was found to be 11 based on the Job's plot analysis. The detection limit of Pb2+ was 4.7 nM, which is far below the allowable concentration determined by WHO in drinking water. Moreover, the fortified rec