https://www.selleckchem.com/products/Naphazoline-hydrochloride-Naphcon.html The ubiquitous nature of dipoles, for example, sets demands on deepening the understanding of how localized electric fields affect charge transfer. Charge-transfer electrets, thus, prove important for advancing the field and for interfacing fundamental science with engineering. Synergy between the vastly different aspects of charge-transfer science sets the stage for the broad global impacts that the advances in this field have.Additive engineering is known to be an effective method for inducing a simultaneous effect of enlarging the grain size and surface passivation. As compared to the monovalent halides frequently used as additives, divalent halides are relatively less investigated in the role of additives. In this work, we report effects of alkaline earth metal halides BCl2 (B = Mg, Ca, Sr, Ba) as additives on the opto-electronic properties and photovoltaic performance of FAPbI3 based perovskite solar cells (PSCs). A significant improvement in power conversion efficiency (PCE) from 17.27% to 21.11% is observed by MgCl2 addition in the FAPbI3 precursor solution, while a marginal increment for CaCl2 or BaCl2 and a negative effect for SrCl2 is observed. The lattice constant of cubic FAPbI3 is hardly changed by additives, while the crystallinity is improved by MgCl2. The carrier lifetime increases from 40 ns to 287 ns and the trap density is reduced from 1.08 × 1016 cm-3 to 3.19 × 1015 cm-3 by addition of 5 mol% MgCl2, which is responsible for the enhancement in photovoltaic parameters. The steady-state PCE of the PSC with the MgCl2-additive-treated FAPbI3 measured under continuous illumination at the maximum power point remains unchanged for 1500 s.Reported herein is the development of a novel polystyrene-based resin that we named PanzaGel. The resin was equipped with diethylene glycol-derived cross-linker with the dedicated application to polymer supported glycan synthesis in mind. After i