https://www.selleckchem.com/products/ly2780301.html Virtual reality (VR) is a valuable experimental tool for studying human movement, including the analysis of interactions during locomotion tasks for developing crowd simulation algorithms. However, these studies are generally limited to distant interactions in crowds, due to the difficulty of rendering realistic sensations of collisions in VR. In this work, we explore the use of wearable haptics to render contacts during virtual crowd navigation. We focus on the behavioural changes occurring with or without haptic rendering during a navigation task in a dense crowd, as well as on potential after-effects introduced by the use haptic rendering. Our objective is to provide recommendations for designing VR setup to study crowd navigation behaviour. To this end, we designed an experiment (N=23) where participants navigated in a crowded virtual train station without, then with, and then again without haptic feedback of their collisions with virtual characters. Results show that providing haptic feedback improved the overall realism of the interaction, as participants more actively avoided collisions. We also noticed a significant after-effect in the users' behaviour when haptic rendering was once again disabled in the third part of the experiment. Nonetheless, haptic feedback did not have any significant impact on the users' sense of presence and embodiment.A critical challenge in using longitudinal neuroimaging data to study the progressions of Alzheimer's Disease (AD) is the varied number of missing records of the patients during the course when AD develops. To tackle this problem, in this paper we propose a novel formulation to learn an enriched representation with fixed length for imaging biomarkers, which aims to simultaneously capture the information conveyed by both baseline neuroimaging record and progressive variations characterized by varied counts of available follow-up records over time. Because the learned b