The current paper supports health motivations analysis in OHCs, with potential to assist users' health-related decision-making.The first coordination compound of copper and tiglic acid named tetrakis(μ-tiglato)bis(tiglic acid)dicopper(II) was synthesized and crystallized from water solution. Its structure was determined and analyzed based on X-ray diffraction measurement. The paddle-wheel coordination system of the investigated compound was compared with other similar copper structures known in the literature. https://www.selleckchem.com/products/jsh-150.html The Hirshfeld analysis was used for the detailed analysis of intermolecular interaction. The new compound was also characterized in terms of infrared absorption, thermal, and magnetic properties. The antiferromagnetic coupling of copper ions was found.Nanocomposite multilayered membrane coatings have been widely used experimentally to enhance biomedical materials surfaces. By the selection of reliable components, such systems are functionalized to be adjusted to specific purposes. As metal nanoparticles can reduce bacterial cell adhesion, the idea of using gold and silver nanoparticles of unique antimicrobial properties within membrane structure is outstandingly interesting considering dressings facilitating wound healing. The study was aimed to explore the interface between eukaryotic cells and wound dressing materials containing various nanoelements. The proposed systems are based on polyethyleneimine and hydroxyapatite thin layers incorporating metallic nanoparticles (silver or gold). To examine the structure of designed materials scanning electron and transmission electron microscopies were applied. Moreover, Fourier-transform infrared and energy-dispersive X-ray spectroscopies were used. Additionally, water contact angles of the designed membranes and their transport properties were estimated. The functioning of human fibroblasts was examined via flow cytometry to assess the biocompatibility of developed shells in the aspect of their cytotoxicity. The results indicated that designed nanocomposite membrane scaffolds support eukaryotic cells' functioning, confirming that the elaborated systems might be recommended as wound healing materials.The rewiring of lipid metabolism is a major adaptation observed in cancer, and it is generally associated with the increased aggressiveness of cancer cells. Targeting lipid metabolism is therefore an appealing therapeutic strategy, but it requires a better understanding of the specific roles played by the main enzymes involved in lipid biosynthesis. Lipin-1 is a central regulator of lipid homeostasis, acting either as an enzyme or as a co-regulator of transcription. In spite of its important functions it is only recently that several groups have highlighted its role in cancer. Here, we will review the most recent research describing the role of lipin-1 in tumor progression when expressed by cancer cells or cells of the tumor microenvironment. The interest of its inhibition as an adjuvant therapy to amplify the effects of anti-cancer therapies will be also illustrated.HIV-1 (human immunodeficiency virus type 1) infection begins with the attachment of the virion to a host cell by its envelope glycoprotein (Env), which subsequently induces fusion of viral and cell membranes to allow viral entry. Upon binding to primary receptor CD4 and coreceptor (e.g., chemokine receptor CCR5 or CXCR4), Env undergoes large conformational changes and unleashes its fusogenic potential to drive the membrane fusion. The structural biology of HIV-1 Env and its complexes with the cellular receptors not only has advanced our knowledge of the molecular mechanism of how HIV-1 enters the host cells but also provided a structural basis for the rational design of fusion inhibitors as potential antiviral therapeutics. In this review, we summarize our latest understanding of the HIV-1 membrane fusion process and discuss related therapeutic strategies to block viral entry.The Zika virus (ZIKV) epidemic in Brazil occurred in regions where dengue viruses (DENV) are historically endemic. We investigated the differences in adverse pregnancy/infant outcomes in two cohorts comprising 114 pregnant women with PCR-confirmed ZIKV infection in Rio de Janeiro, Southeastern Brazil (n = 50) and Manaus, in the north region of the country (n = 64). Prior exposure to DENV was evaluated through plaque reduction neutralizing antibody assays (PRNT 80) and DENV IgG serologies. Potential associations between pregnancy outcomes and Zika attack rates in the two cities were explored. Overall, 31 women (27%) had adverse pregnancy/infant outcomes, 27 in Rio (54%) and 4 in Manaus (6%), p less then 0.001. This included 4 pregnancy losses (13%) and 27 infants with abnormalities at birth (24%). A total of 93 women (82%) had evidence of prior DENV exposure, 45 in Rio (90%) and 48 in Manaus (75%). Zika attack rates differed; the rate in Rio was 10.28 cases/10,000 and in Manaus, 0.6 cases/10,000, p less then 0.001. Only Zika attack rates (Odds Ratio 17.6, 95% Confidence Interval 5.6-55.9, p less then 0.001) and infection in the first trimester of pregnancy (OR 4.26, 95% CI 1.4-12.9, p = 0.011) were associated with adverse pregnancy and infant outcomes. Pre-existing immunity to DENV was not associated with outcomes (normal or abnormal) in patients with ZIKV infection during pregnancy.The possibility of using silver nanoparticles (AgNPs) to enhance the plants growth, crop production, and control of plant diseases is currently being researched. One of the most effective approaches for the production of AgNPs is green synthesis. Herein, we report a green and phytogenic synthesis of AgNPs by using aqueous extract of strawberry waste (solid waste after fruit juice extraction) as a novel bioresource, which is a non-hazardous and inexpensive that can act as a reducing, capping, and stabilizing agent. Successful biosynthesis of AgNPs was monitored by UV-visible spectroscopy showing a surface plasmon resonance (SPR) peak at ~415 nm. The X-ray diffraction studies confirm the face-centered cubic crystalline AgNPs. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques confirm the rectangular shape with an average size of ~55 nm. The antibacterial and antifungal efficacy and inhibitory impact of the biosynthesized AgNPs were tested against nematode, Meloidogyne incognita, plant pathogenic bacterium, Ralstonia solanacearum and fungus, Fusarium oxysporum.