Xylan is the major hemicellulose present in sugarcane stem secondary cell walls. Xylan is composed of xylose backbone with a high degree of substitutions, which affects its properties. In the present study, the xylan from sugarcane tops (SCT) was extracted and characterized. Compositional analysis of xylan extracted from SCT (SCTx) displayed the presence of 74% of d-xylose residues, 16% of d-glucuronic acid residues and 10% of l-arabinose. High performance size exclusion chromatographic analysis of SCTx displayed a single peak corresponding to a molecular mass of ∼57 kDa. The Fourier transform infrared spectroscopic analysis of SCTx displayed the peaks corresponding to those obtained from commercial xylan. FESEM analysis of SCTx showed the granular and porous surface structure. Differential thermogravimetric analysis (DTG) of SCTx displayed two thermal degradation temperatures (Td) of 228°C, due to breakdown of the side chains of glucuronic acid and arabinose and 275°C, due to breakdown of xylan back bone. The presence of arabinose and glucuronic acid as a side chains was confirmed by the DTG and thermogravimetric analysis. The CHNS analysis of SCTx showed the presence of only carbon and hydrogen supporting its purity. The recombinant xylanase (CtXyn11A) from Clostridium thermocellum displayed a specific activity of 1394 ± 51 U/mg with SCTx, which was higher than those with commercial xylans. The thin layer chromatography and electrospray ionization mass spectroscopy analyses of CtXyn11A hydrolysed SCTx contained a series of linear xylo-oligosaccharides ranging from degree of polymerization 2-6 and no substituted xylo-oligosaccharides because of the endolytic activity of enzyme. The extracted xylan from SCT can be used as an alternative commercial substrate and for oligo-saccharide production.Traditionally, filamentous fungi and actinomycetes are well-known cellulolytic microorganisms that have been utilized in the commercial production of cellulase enzyme cocktails for industrial-scale degradation of plant biomass. Noticeably, the Ktedonobacteria lineage (phylum Chloroflexi) with actinomycetes-like morphology was identified and exhibited diverse carbohydrate utilization or degradation abilities. In this study, we performed genome-wide profiling of carbohydrate-active enzymes (CAZymes) in the filamentous Ktedonobacteria lineage. Numerous CAZymes (153-290 CAZymes, representing 63-131 glycoside hydrolases (GHs) per genome), including complex mixtures of endo- and exo-cellulases, were predicted in 15 available Ktedonobacteria genomes. Of note, 4-28 CAZymes were predicted to be extracellular enzymes, whereas 3-29 CAZymes were appended with carbohydrate-binding modules (CBMs) that may promote their binding to insoluble carbohydrate substrates. This number far exceeded other Chloroflexi lineages and were comparable to the cellulolytic actinomycetes. Six multi-modular extracellular GHs were cloned from the thermophilic Thermosporothrix hazakensis SK20-1T strain and heterologously expressed. https://www.selleckchem.com/products/go-6983.html The putative endo-glucanases of ThazG5-1, ThazG9, and ThazG12 exhibited strong cellulolytic activity, whereas the putative exo-glucanases ThazG6 and ThazG48 formed weak but observable halos on carboxymethyl cellulose plates, indicating their potential biotechnological application. The purified recombinant ThazG12 had near-neutral pH (optimal 6.0), high thermostability (60°C), and broad specificity against soluble and insoluble polysaccharide substrates. It also represented described a novel thermostable bacterial β-1,4-glucanase in the GH12 family. Together, this research revealed the underestimated cellulolytic potential of the Ktedonobacteria lineage and highlighted its potential biotechnological utility as a promising microbial resource for the discovery of industrially useful cellulases. This paper presents the results of a randomized controlled trial (RCT) that focus on health-related quality-of-life (QoL) and patient-reported satisfaction following breast reconstruction with pedicled flaps from the back. We included women for unilateral delayed breast reconstruction. Patients were randomized to reconstruction by either a latissimus dorsi (LD) flap or a thoracodorsal artery perforator (TAP) flap. Assessment of QoL and patient satisfaction was made using two different patient-reported outcome measures (PROMs) The EORTC QLQ-30 and the Breast-Q questionnaire for post-mastectomy breast reconstruction. A total of 50 women were enrolled over a two-year period and allocated to reconstruction. Forty patients completed both surgery and follow-up and were included in the analysis - 18 in the LD group and 22 in the TAP group. The EORTC QLQ-30 was administered at the baseline and at one-year follow-up. There was no significant effect of introducing the TAP flap on either the summary score, the glocance these reconstructions might have on satisfaction and QoL. Our study goals were to evaluate the diagnostic performance of four anti-SARS-CoV-2 antibodies tests and the differences in dynamic immune responses between COVID-19 patients with and without pneumonia. We collected 184 serum samples from 70 consecutively qRT-PCR-confirmed COVID-19 patients at four participating hospitals from 23 January 2020 to 30 September 2020. COVID-19 pneumonia was defined as the presence of new pulmonary infiltration. Serum samples were grouped by the duration after symptom onset on a weekly basis for antibody testing and analysis. The four immunoassays Beckman SARS-CoV-2 IgG/IgM (Beckman Test), Siemens (ADVIA Centaur®) SARS-CoV-2 Total (COV2T) (Siemens Test), SBC COVID-19 IgG ELISA (SBC Test) and EliA SARS-CoV-2-Sp1 IgG/IgM/IgA P2 Research (EliA Test) were used for detecting the SARS-CoV-2 specific antibodies. The sensitivity of all tests reached 100% after 42 days of symptom onset. Siemens Test, the only test detecting total anti-SARS-CoV-2 antibodies, had the best performance in the early diagnosis of COVID-19 infection (day 0-7 77%; day 8-14 95%) compared to the other 3 serological tests. All tests showed 100% specificity except SBC Test (98%). COVID-19 patients with pneumonia had significantly higher testing signal values than patients without pneumonia (all p values<0.05, except EliA IgM Test). However, Siemens Test and SBC Test had highest probability in early prediction of the presence of COVID-19 pneumonia. Chronological analysis of immune response among COVID-19 patients with different serological tests provides important information in the early diagnosis of SARS-CoV-2 infection and prediction of the risk of pneumonia after infection. Chronological analysis of immune response among COVID-19 patients with different serological tests provides important information in the early diagnosis of SARS-CoV-2 infection and prediction of the risk of pneumonia after infection.