A new fluorescent sensor of tetraphenylethylene (TPE) derivate with four dimethylformamidine and four chloride anions, sensor 1, was resoundingly synthesized. Meanwhile, the structure of sensor 1 has been characterized by 1H NMR, 13C NMR, FT-IR and mass spectrum. Sensor 1 can dissolve in water completely and showed significant fluorescence enhancement response towards PO43- with selectivity and sensitivity in pure water. The results of fluorescence spectra, turbidity measurement, dynamic light scattering (DLS) and fluorescent micrographs elucidated that the distinct fluorescence enhancement of sensor 1 with PO43- anion can be attributed to the aggregation-induced emission (AIE) of TPE. The AIE of sensor 1 with PO43- anion was reversible, proved by the alternate addition of PO43- anion and calcium ion. The fluorescence intensity of sensor 1 at 510 nm gradually increased and was obviously augmented by 266% when the added concentration of PO43- was 150 μmol L-1 (15 equiv. of sensor 1). In addition, the fluorescence intensity also displayed a good linear relationship with PO43- ions in the large concentration range of 10-150 μmol L-1 with very low detection limit for PO43- of 6.56 × 10-8 mol L-1. Furthermore, sensor 1 also presented the semi-quantitative visual detection ability for PO43- in solutions and test paper mode via the fluorescence changes and quantitative detection potential for PO43- in actual water sample.Uranium ore is mined and milled to produce uranium ore concentrate (UOC), a regulated product of the nuclear fuel cycle. Diversion of UOC from the fuel cycle into possible weapons production is a key concern in global nonproliferation efforts. As such, the ability to trace the origin of seized nuclear materials is imperative to law enforcement efforts. Although isotopic signatures of UOCs have proven fruitful to pinpoint sample provenance, new isotopic signatures are needed because most existing isotopic signatures are not indicative of the original ore body from which the U is derived. In this work, we developed a new method to separate samarium (Sm) from a U-rich sample matrix and report the first Sm isotope compositions of 32 UOCs derived from a variety of worldwide uranium mines. Relative to terrestrial standards, approximately half the UOCs have resolved and anticorrelated 149Sm-150Sm isotope compositions, consistent with the capture of thermal neutrons by 149Sm in the ore body. The UOCs with anomalous Sm isotope compositions tend to derive from older (~>1.5Ga) and higher-grade ore bodies, although other factors, such as the presence of neutron moderators like water, also play a role. Nonetheless, the Sm isotope compositions of UOCs directly reflects the neutron fluence over the history of the original ore body and can be used to discern different geologic conditions associated with that ore body. As such, this work demonstrates the potential use of Sm isotopes as a novel nuclear forensics signature for origin assessment of UOCs.A new cationic Ir(III) complex with aldehyde and amino groups was synthesized and characterized. The Ir(III) complex has rich photophysical properties. The reaction of the aldehyde group in the Ir(III) complex with homocysteine (Hcy) afforded thiazinane derivatives which resulted in obvious changes in the luminescence spectra. After addition of Hcy to the Ir(III) complex containing 4,4'-diamino-2,2'-bipyridine, the luminescence intensity at ca. 580-610 nm decreased, and a new band at ca.490-520 nm appeared and enhanced strongly with a large blue shift of ca.90 nm, and the luminescent color changed from orange red to green. Based on this ratiometric probe, it can sensitively and selectively recognize Hcy by the ratio of emission intensity at two wavelengths to the concentrations of Hcy. While after addition of cysteine (Cys) or glutathione (GSH), the luminescence band showed a mild decrease in intensity with an unnoticeable shift. These different phenomena make it capable of discriminating homocysteine from cysteine and glutathione. The cytotoxicity and imaging of the complex were also studied in this work. The complex exhibited very low cytotoxicity on HeLa cells and showed sensitivity toward Hcy in living cells. These advantages provide it a good candidate for the application in the analytical and bioanalytical field.A double-stage Lab-In-Syringe automated extraction procedure coupled online to HPLC for the determination of four sulfonamides in urine has been developed. Our method is based on homogeneous liquid-liquid extraction at pH 3 using water-miscible acetonitrile with induction of phase separation by the addition of a saturated solution of kosmotropic salts MgSO4 and NaCl. The procedure allowed extraction of the moderately polar model analytes and the use of a solvent that is compatible with the used separation technique. The automated sample preparation system based on the stirring-assisted Lab-In-Syringe approach was coupled on-line with HPLC-UV for the subsequent separation of the sulfonamide antibiotics. To improve both preconcentration factor and extract cleanup, the analytes were trapped at pH 10 in an anion-exchange resin cartridge integrated into the HPLC injection loop thus achieving a double-stage sample clean-up. Analytes were eluted using an acidic HPLC mobile phase in gradient elution mode. Running the analytes separation and the two-step preparation of the following sample in parallel reduced the total time of analysis to mere 13.5 min. Limits of detection ranged from 5.0 to 7.5 μg/L with linear working ranges of 50-5000 μg/L (r2 > 0.9997) and RSD ≤ 5% (n = 6) at a concentration level of 50 μg/L. Average recovery values were 102.7 ± 7.4% after spiking of urine with sulfonamides at concentrations of 2.5 and 5 mg/L followed by 5 times dilution. To the best of our knowledge, the use of Lab-In-Syringe for the automation of coupled homogeneous liquid-liquid extraction and SPE for preparation of the complex matrices suitable for separation techniques is here presented for the first time.This work demonstrates the first forensic application of GC-ICP-MS for improved investigations of volatile organic compounds originating from a decomposing body. https://www.selleckchem.com/products/Temsirolimus.html Volatile organic compounds were extracted from the headspace of human remains using sorbent tubes over a total time of 39 days. To account for naturally abundant species, control sites were prepared and sampled accordingly. All samples were spiked with an internal standard to minimise drift effects and errors during sample preparation and further analysis. Compound independent quantification was possible from a single chromatogram with a standard mix containing volatile pesticide compounds representing different mass fractions of target elements for calibration. Phosphorus, sulphur and chlorine were investigated as biologically relevant elements, which potentially form detectable volatile species during decomposition. The limits of detection of these elements in the headspace were 0.7, 5.4 and 1.6 ng/L, respectively. For sulphur, we identified abundant species which increased in concentrations of up to 1310 ng/L in the headspace above the remains.