A common strategy for multi-protein expression is to link genes by self-cleaving 2A peptide sequences. Yet, little is known how the 2A peptide-derived N-terminal proline or adjacent non-native residues introduced during cDNA cloning affects protein stoichiometry. Polycistronic reprogramming constructs with altered KLF4 protein stoichiometry can influence induced pluripotent stem cell (iPSC) generation. We studied the impact of N-terminal 2A peptide-adjacent residues on the protein stability of two KLF4 isoforms, and assayed their capacity to generate iPSCs. Here, we show that the N-terminal proline remnant of the 2A peptide, alone or in combination with leucine, introduced during polycistronic cloning, destabilizes KLF4 resulting in increased protein degradation, which hinders reprogramming. Interestingly, the addition of charged and hydrophilic amino acids, such as glutamate or lysine stabilizes KLF4, enhancing reprogramming phenotypes. These findings raise awareness that N-terminal modification with 2A peptide-derived proline or additional cloning conventions may affect protein stability within polycistronic constructs. Aberrant neuronal development and the persistence of mitotic cellular populations have been implicated in a multitude of neurological disorders, including Huntington's disease (HD). However, the mechanism underlying this potential pathology remains unclear. We used a modified protocol to differentiate induced pluripotent stem cells (iPSCs) from HD patients and unaffected controls into neuronal cultures enriched for medium spiny neurons, the cell type most affected in HD. We performed single-cell and bulk transcriptomic and epigenomic analyses and demonstrated that a persistent cyclin D1+ neural stem cell (NSC) population is observed selectively in adult-onset HD iPSCs during differentiation. Treatment with a WNT inhibitor abrogates this NSC population while preserving neurons. Taken together, our findings identify a mechanism that may promote aberrant neurodevelopment and adult neurogenesis in adult-onset HD striatal neurons with the potential for therapeutic compensation. Vinculin is a universal adaptor protein that transiently reinforces the mechanical stability of adhesion complexes. It stabilizes mechanical connections that cells establish between the actomyosin cytoskeleton and the extracellular matrix via integrins or to neighboring cells via cadherins, yet little is known regarding its mechanical design. Vinculin binding sites (VBSs) from different nonhomologous actin-binding proteins use conserved helical motifs to associate with the vinculin head domain. We studied the mechanical stability of such complexes by pulling VBS peptides derived from talin, α-actinin, and Shigella IpaA out of the vinculin head domain. Experimental data from atomic force microscopy single-molecule force spectroscopy and steered molecular dynamics (SMD) simulations both revealed greater mechanical stability of the complex for shear-like than for zipper-like pulling configurations. This suggests that reinforcement occurs along preferential force directions, thus stabilizing those cytoskeletal filament architectures that result in shear-like pulling geometries. Large force-induced conformational changes in the vinculin head domain, as well as protein-specific fine-tuning of the VBS sequence, including sequence inversion, allow for an even more nuanced force response. Most lysosomal hydrolytic enzymes reach their destination via the mannose-6-phosphate (M6P) pathway. The enzyme N-acetylglucosamine-1-phosphodiester α-N-acetylglucosaminidase (NAGPA, or "uncovering enzyme") catalyzes the second step in the M6P tag formation, namely the removal of the masking N-acetylglucosamine (GlcNAc) portion. Defects in this protein are associated with non-syndromic stuttering. To gain a better understanding of the function and regulation of this enzyme, we determined its crystal structure. The propeptide binds in a groove on the globular catalytic domain, blocking active site access. High-affinity substrate binding is enabled by a conformational switch in an active site loop. The protein recognizes the GlcNAc and phosphate portions of its substrate, but not the mannose moiety of the glycan. Based on enzymatic and 1H-NMR analysis, a catalytic mechanism is proposed. Crystallographic and solution scattering analyses suggest that the C-terminal domain forms a long flexible stem that extends the enzyme away from the Golgi membrane. Formation of self-associating loop domains is a fundamental organizational feature of metazoan genomes. Here, we employed quantitative live-imaging methods to visualize impacts of higher-order chromosome topology on enhancer-promoter communication in developing Drosophila embryos. Evidence is provided that distal enhancers effectively produce transcriptional bursting from target promoters over distances when they are flanked with boundary elements. https://www.selleckchem.com/products/jtc-801.html Importantly, neither inversion nor deletion of a boundary element abrogates this "enhancer-assisting activity," suggesting that they can facilitate intra-domain enhancer-promoter interaction and production of transcriptional bursting independently of topologically associating domain (TAD) formation. In contrast, domain-skipping activity of distal enhancers was lost after disruption of topological domains. This observation raises a possibility that intra-domain and inter-domain enhancer-promoter interactions are differentially regulated by chromosome topology. The activity-dependent rules that govern the wiring of GABAergic interneurons are not well understood. Chandelier cells (ChCs) are a type of GABAergic interneuron that control pyramidal cell output through axo-axonic synapses that target the axon initial segment. In vivo imaging of ChCs during development uncovered a narrow window (P12-P18) over which axons arborized and formed connections. We found that increases in the activity of either pyramidal cells or individual ChCs during this temporal window result in a reversible decrease in axo-axonic connections. Voltage imaging of GABAergic transmission at the axon initial segment (AIS) showed that axo-axonic synapses were depolarizing during this period. Identical manipulations of network activity in older mice (P40-P46), when ChC synapses are inhibitory, resulted instead in an increase in axo-axonic synapses. We propose that the direction of ChC synaptic plasticity follows homeostatic rules that depend on the polarity of axo-axonic synapses.