https://www.selleckchem.com/products/epz004777.html Staphylococcus aureus is one of the leading causes of hospital and community-acquired infections worldwide. The increasing occurrence of antibiotic resistant strains and the high rates of recurrent staphylococcal infections have placed several treatment challenges on healthcare systems. In recent years, it has become evident that S. aureus is a facultative intracellular pathogen, able to invade and survive in a range of cell types. The ability to survive intracellularly provides this pathogen with yet another way to evade antibiotics and immune responses during infection. Intracellular S. aureus have been strongly linked to several recurrent infections, including severe bone infections and septicemias. S. aureus is armed with an array of virulence factors as well as an intricate network of regulators that enable it to survive, replicate and escape from a number of immune and nonimmune host cells. It is able to successfully manipulate host cell pathways and use it as a niche to multiply, disseminate, as well as persist during an infection. #link# This bacterium is also known to adapt to the intracellular environment by forming small colony variants, which are metabolically inactive. In this review we will discuss the clinical evidence, the molecular pathways involved in S. aureus intracellular persistence, and new treatment strategies for targeting intracellular S. aureus.As a result of anthropogenic activity, large number of recalcitrant aromatic compounds have been released into the environment. Consequently, microbial communities have adapted and evolved to utilize these compounds as sole carbon source, under both aerobic and anaerobic conditions. The constitutive expression of enzymes necessary for metabolism imposes a heavy energy load on the microbe which is overcome by arrangement of degradative genes as operons which are induced by specific inducers. The segmentation of pathways into upper, middle and/or low