This points to the crucial role of an efficient testing policy and the necessity to upscale testing capacity.Natural evolution tackles optimization by producing many genetic variants and exposing these variants to selective pressure, resulting in the survival of the fittest. We use high throughput screening of large libraries of materials with differing surface topographies to probe the interactions of implantable device coatings with cells and tissues. However, the vast size of possible parameter design space precludes a brute force approach to screening all topographical possibilities. Here, we took inspiration from Nature to optimize materials surface topographies using evolutionary algorithms. We show that successive cycles of material design, production, fitness assessment, selection, and mutation results in optimization of biomaterials designs. Starting from a small selection of topographically designed surfaces that upregulate expression of an osteogenic marker, we used genetic crossover and random mutagenesis to generate new generations of topographies.Chronic lymphocytic leukemia (CLL) is a B lymphoid malignancy highly dependent on the microenvironment. Despite new targeted therapies such as ibrutinib and venetoclax, disease progression and relapse remain an issue. CLL cell interactions with the supportive tissue microenvironment play a critical role in disease pathogenesis. We used a platform for drug discovery based on systems biology and artificial intelligence, to identify drugs targeting key proteins described to have a role in the microenvironment. The selected compounds were screened in CLL cell lines in the presence of stromal cells to mimic the microenvironment and validated the best candidates in primary CLL cells. Our results showed that the commercial drug simvastatin was the most effective and selective out of the tested compounds. Simvastatin decreased CLL cell survival and proliferation as well as cell adhesion. Importantly, this drug enhanced the antitumor effect of venetoclax and ibrutinib. We proposed that systems biology approaches combined with pharmacological screening could help to find new drugs for CLL treatment and to predict new combinations with current therapies. Our results highlight the possibility of repurposing widely used drugs such as statins to target the microenvironment and to improve the efficacy of ibrutinib or venetoclax in CLL cells.Abnormal maternal serum biomarkers (AMSB), identified through the aneuploidy screening programme, are frequent incidental findings in pregnancy. They are associated with fetal growth restriction (FGR), but previous studies have not examined whether this association is with early-onset ( 34 weeks) FGR; as a result there is no consensus on management. The aims of this study were to determine the prevalence and phenotype of FGR in women with AMSB and test the predictive value of placental sonographic screening to predict early-onset FGR. 1196 pregnant women with AMSB underwent a 21-24 week "placental screen" comprising fetal and placental size, and uterine artery Doppler. Multivariable regression was used to calculate a predictive model for early-onset FGR (birthweight centile  less then  3rd/ less then  10th with absent umbilical end-diastolic flow,  less then  34 weeks). https://www.selleckchem.com/products/blebbistatin.html FGR prevalence was high (10.3%), however early-onset FGR was uncommon (2.3%). Placental screening effectively identified early-onset (area under the curve (AUC) 0.93, 95% confidence interval (CI) 0.87-1.00), but not late-onset FGR (AUC 0.70, 95% CI 0.64-0.75). Internal validation demonstrated robust performance for detection/exclusion of early-onset FGR. In this cohort, utilisation of our proposed algorithm with targeted fetal growth and Doppler surveillance, compared with universal comprehensive surveillance would have avoided 1044 scans, potentiating significant cost-saving for maternity services.Pseudorabies virus (PRV) infection can elicit nervous system disorders. Curcumin has been reported to have neuroprotective effects. However, whether curcumin can protect neurons against PRV infection and the underlying mechanisms remain unclear. In the present study, for the first time, the protective effects of curcumin against PRV-induced oxidative stress, apoptosis, and mitochondrial dysfunction in rat hippocampal neurons and the brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (TrkB) pathway were investigated. Results indicated that PRV with a titer of 3.06 × 106 TCID50 (50% tissue culture infective dose) induced oxidative damage of hippocampal neurons 2 h post-infection and that 10 μM curcumin improved the viability of PRV-infected hippocampal neurons. Blocking the BDNF/TrkB pathway reversed the neuroprotective effects of curcumin, which were imparted by decreasing the PRV-induced upregulation of nitric oxide synthase expression, repressing the PRV-activated mitochondrial apoptotic pathway, and mitochondrial dysfunction. To conclude, curcumin exhibited a neuroprotective role against PRV infection by upregulating the BDNF/TrkB pathway. This study provides insight into the anti-PRV neuroprotective application of curcumin and the underlying mechanism in the prophylaxis and treatment of neurological disorders caused by PRV infection.Huntington's disease (HD) is a monogenetic neurodegenerative disorder that is caused by the expansion of a polyglutamine region within the huntingtin (HTT) protein, but there is still an incomplete understanding of the molecular mechanisms that drive pathology. Expression of the mutant form of HTT is a key aspect of diseased tissues, and the most promising therapeutic approaches aim to lower expanded HTT levels. Consequently, the investigation of HTT expression in time and in multiple tissues, with assays that accurately quantify expanded and non-expanded HTT, are required to delineate HTT homeostasis and to best design and interpret pharmacodynamic readouts for HTT lowering therapeutics. Here we evaluate mutant polyglutamine-expanded (mHTT) and polyglutamine-independent HTT specific immunoassays for validation in human HD and control fibroblasts and use to elucidate the CSF/brain and peripheral tissue expression of HTT in preclinical HD models.