https://www.selleckchem.com/products/3-methyladenine.html PBT treatment blunted M2-like alternative activation of bone marrow-derived macrophages and reduced STAT3 activation in MDSC cultures while increasing the differentiation of CD80+, CD11c+ macrophages. PBT significantly enhanced the antitumor efficacy of PD-1 blockade in both 4T1 and B16F10 tumors resistant to anti-PD-1 monotherapy, increasing tumor-specific cytotoxic T cells and survival of tumor-bearing animals beyond that with PBT or PD-1 blockade alone. Our results suggest that cotreatment with DFMO and the Trimer polyamine transport inhibitor may improve the therapeutic efficacy of immunotherapies in patients with cancer with resistant tumors.Uveal melanoma is a rare and aggressive cancer that originates in the eye. Currently, there are no approved targeted therapies and very few effective treatments for this cancer. Although activating mutations in the G protein alpha subunits, GNAQ and GNA11, are key genetic drivers of the disease, few additional drug targets have been identified. Recently, studies have identified context-specific roles for the mammalian SWI/SNF chromatin remodeling complexes (also known as BAF/PBAF) in various cancer lineages. Here, we find evidence that the SWI/SNF complex is essential through analysis of functional genomics screens and further validation in a panel of uveal melanoma cell lines using both genetic tools and small-molecule inhibitors of SWI/SNF. In addition, we describe a functional relationship between the SWI/SNF complex and the melanocyte lineage-specific transcription factor Microphthalmia-associated Transcription Factor, suggesting that these two factors cooperate to drive a transcriptional program essential for uveal melanoma cell survival. These studies highlight a critical role for SWI/SNF in uveal melanoma, and demonstrate a novel path toward the treatment of this cancer.Small molecule inhibitors targeting mutant EGFR are standard of care in non-small cell lung