https://www.selleckchem.com/products/2-6-dihydroxypurine.html Human immunodeficiency virus (HIV) infection leads to the establishment of a long-lived latent cellular reservoir. One strategy to eliminate quiescent reservoir cells is to reactivate virus replication to induce HIV envelope glycoprotein (Env) expression on the cell surface exposing them to subsequent antibody targeting. Via the interactions between the antibody Fc domain and Fc-γ receptors (FcγRs) that are expressed on innate effector cells, such as natural killer cells, monocytes, and neutrophils, antibodies can mediate the elimination of infected cells. Over the last decade, a multitude of human monoclonal antibodies that are broadly neutralizing across many HIV-1 subtypes have been identified and are currently being explored for HIV eradication strategies. Antibody development also includes novel Fc engineering approaches to increase engagement of effector cells and optimize antireservoir efficacy. In this review, we discuss the usefulness of antibodies for HIV eradication approaches specifically focusing on antibody-mediated strategies to target latently infected cells and options to increase antibody efficacy.The development of an effective human immunodeficiency virus (HIV) cure is a critical global health priority. A major obstacle to this effort is the establishment of a latent reservoir of HIV infected cells, which necessitates lifelong therapy, causing both logistical and adherence burdens for infected individuals. However, in a subset of these individuals, cytotoxic T lymphocytes (CTLs) can durably suppress viral outgrowth in the absence of therapy, providing a path towards a viable HIV cure. In this review, we discuss the emerging role that CTLs have in HIV cure efforts, with particular emphasis on epitope specificity. Recent studies have demonstrated that successful in vivo containment of the virus is rooted in the specific targeting of fitness-constrained, mutation-resistant regions of the