https://www.selleckchem.com/products/sw-100.html No other animal has a closer mutualistic relationship with humans than the dog (Canis familiaris). Domesticated from the Eurasian grey wolf (Canis lupus), dogs have evolved alongside humans over millennia in a relationship that has transformed dogs and the environments in which humans and dogs have co-inhabited. The story of the dog is the story of recent humanity, in all its biological and cultural complexity. By exploring human-dog-environment interactions throughout time and space, it is possible not only to understand vital elements of global history, but also to critically assess our present-day relationship with the natural world, and to begin to mitigate future global challenges. In this paper, co-authored by researchers from across the natural and social sciences, arts and humanities, we argue that a dog-centric approach provides a new model for future academic enquiry and engagement with both the public and the global environmental agenda.The capacity of a biomaterial to innately modulate cell behavior while meeting the mechanical property requirements of the implant is a much sought-after goal within bioengineering. Here we covalently incorporate soluble elastin into a gelatin-poly (ethylene glycol) (PEG) hydrogel for three-dimensional (3D) cell encapsulation to achieve these properties. The inclusion of elastin into a previously optimized gelatin-PEG hydrogel was then evaluated for effects on entrapped fibroblasts, with the aim to assess the hydrogel as an extracellular matrix (ECM)-mimicking 3D microenvironment for cellular guidance. Soluble elastin was incorporated both physically and covalently into novel gelatin/elastin hybrid PEG hydrogels with the aim to harness the cellular interactivity and mechanical tunability of both elastin and gelatin. This design allowed us to assess the benefits of elastin-containing hydrogels in guiding fibroblast activity for evaluation as a potential dermal replacement. It