Pim kinases are upregulated in several forms of cancer, contributing to cell survival and tumour development, but their role in platelet function and thrombotic disease has not been explored. We report for the first time that Pim-1 is expressed in human and mouse platelets. Genetic deletion or pharmacological inhibition of Pim kinase results in reduced thrombus formation but is not associated with impaired haemostasis. Attenuation of thrombus formation was found to be due to inhibition of the thromboxane A2 receptor as effects on platelet function was non-additive to inhibition caused by the cyclooxygenase inhibitor indomethacin or thromboxane A2 receptor antagonist GR32191. Treatment with Pim kinase inhibitors caused reduced surface expression of the thromboxane A2 receptor and resulted in reduced responses to thromboxane A2 receptor agonists, indicating a role for Pim kinase in the regulation of thromboxane A2 receptor function. Our research identifies a novel, Pim kinase dependent regulatory mechanism for the thromboxane A2 receptor and represents a new targeting strategy that is independent of COX-1 inhibition or direct antagonism of the thromboxane A2 receptor that whilst attenuating thrombosis does not increase bleeding.Anti-RhD antibodies are widely used in clinical practice to prevent immunization against RhD, principally in hemolytic disease of the fetus and newborn. Intriguingly, this disease is induced by production of the very same antibodies when an RhD negative woman is pregnant with an RhD positive fetus. Despite over five decades of use, the mechanism of this treatment is, surprisingly, still unclear. Here we show that anti-RhD antibodies induce human natural killer (NK) cell degranulation. Mechanistically, we demonstrate that NK cell degranulation is mediated by binding of the Fc segment of anti-RhD antibodies to CD16, the main Fcγ receptor expressed on NK cells. We found that this CD16 activation is dependent upon glycosylation of the anti-RhD antibodies. Furthermore, we show that anti-RhD antibodies induce NK cell degranulation in vivo in patients who receive this treatment prophylactically. Finally, we demonstrate that the anti-RhD drug KamRho enhances the killing of dendritic cells. We suggest that this killing leads to reduced activation of adaptive immunity and may therefore affect the production of anti-RhD antibodies.This report contains the updated consensus recommendations for optimal haemophilia care produced in 2019 by three Working Groups (WG) on behalf of European Directorate for Quality of Medicines & Healthcare in the frame of the Kreuth V Initiative. WG1 recommended the access to prophylaxis for all patients, the attainment of plasma factor trough levels of at least 3-5% when extended half-life FVIII and FIX products are used, treatment regimen personalisation and choice of chromogenic assays for treatment monitoring. It was also emphasized that innovative therapies should be supervised by Haemophilia Comprehensive Care Centres. WG2 recommended mandatory postmarketing data collection to assure the long-term safety and efficacy of new haemophilia therapies, the establishment with adequate support under public control of national patient registries including the core data recommended by EMA and ISTH, and more collaboration to facilitate comprehensive data evaluation in Europe. WG3 discussed methodological aspects of haemophilia care in the context of access decisions particularly for innovative therapies, and recommended that clinical studies should be designed to provide the best possible evidence needed by regulatory authorities, HTA bodies and healthcare providers. https://www.selleckchem.com/products/ms-275.html The dialogue between all stakeholders in haemophilia care and patient organizations should be fostered to implement these recommendations.A major challenge in the development of a gene therapy for hemophilia A (HA) is the selection of cell type- or tissue-specific promoters to ensure factor VIII (FVIII) expression without eliciting an immune response. As liver sinusoidal endothelial cells (LSECs) are the major FVIII source, understanding the transcriptional F8 regulation in these cells would help optimize the minimal F8 promoter (pF8) to efficiently drive FVIII expression. In silico analyses predicted several binding sites (BS) for the E26 transformation-specific (Ets) transcription factors Ets-1 and Ets-2 in the pF8. Reporter assays demonstrated a significant up-regulation of pF8 activity by Ets-1 or Ets-1/Est-2 combination, while Ets2 alone was ineffective. Moreover, Ets-1/Ets-2-DNA binding domain mutants (DBD) abolished promoter activation only when the Ets-1 DBD was removed, suggesting that pF8 up-regulation may occur through Ets-1/Ets-2 interaction with Ets-1 bound to DNA. pF8 carrying Ets-BS deletions unveiled two Ets-BS essential for pF8 activity and response to Ets overexpression. Lentivirus-mediated delivery of GFP or FVIII cassettes driven by the shortened promoters led to GFP expression mainly in endothelial cells in the liver and to long-term FVIII activity without inhibitor formation in HA mice. These data strongly support the potential application of these promoters in HA gene therapy.Aims Patients with de novo chest pain are usually investigated non-invasively. The new UK-National Institute for Health and Care Excellence (NICE) guidelines recommend CT coronary angiography (CTCA) for all patients, while European Society of Cardiology (ESC) recommends functional tests. We sought to compare the clinical utility and perform a cost analysis of these recommendations in two UK centres with different primary investigative strategies. Methodsresults We compared two groups of patients, group A (n=667) and group B (n=654), with new onset chest pain in two neighbouring National Health Service hospitals, each primarily following either ESC (group A) or NICE (group B) guidance. We assessed the clinical utility of each strategy, including progression to invasive coronary angiography (ICA) and revascularisation. We present a retrospective cost analysis in the context of UK tariff for stress echo (£176), CTCA (£220) and ICA (£1001). Finally, we sought to identify predictors of revascularisation in the whole population.