https://www.selleckchem.com/products/gyy4137.html © 2020 by John Wiley & Sons, Inc. Basic Protocol 1 Dissection of post-implantation (5.5-9.5 dpc) murine embryos Basic Protocol 2 Whole-mount in situ hybridization in post-implantation embryos Basic Protocol 3 Visualization of post-WMISH embryos Support Protocol 1 Creation of siliconized glass pipettes Support Protocol 2 Creation of embryo powder.One-seventh of the world's adult population, or approximately one billion people, are estimated to have OSA. Over the past four decades, obesity, the main risk factor for OSA, has risen in striking proportion worldwide. In the past 5 years, the WHO estimates global obesity to affect almost two billion adults. A second major risk factor for OSA is advanced age. As the prevalence of the ageing population and obesity increases, the vulnerability towards having OSA increases. In addition to these traditional OSA risk factors, studies of the global population reveal select contributing features and phenotypes, including extreme phenotypes and symptom clusters that deserve further examination. Untreated OSA is associated with significant comorbidities and mortality. These represent a tremendous threat to the individual and global health. Beyond the personal toll, the economic costs of OSA are far-reaching, affecting the individual, family and society directly and indirectly, in terms of productivity and public safety. A better understanding of the pathophysiology, individual and ethnic similarities and differences is needed to better facilitate management of this chronic disease. In some countries, measures of the OSA disease burden are sparse. As the global burden of OSA and its associated comorbidities are projected to further increase, the infrastructure to diagnose and manage OSA will need to adapt. The use of novel approaches (electronic health records and artificial intelligence) to stratify risk, diagnose and affect treatment are necessary. Together, a unified multi-discipli