Background Targeting G protein-coupled receptors (GPCRs) in pancreatic cells is feasible to modulate glucose-induced insulin secretion. Because pancreatic islets consist of several cell types and GPCRs can couple to more than one G-protein family, results obtained in pancreatic cell lines do not always match the response in primary cells or intact islets. Therefore, we set out to establish a protocol to analyze second messenger activation in mouse pancreatic islets. https://www.selleckchem.com/products/CP-690550.html Results Activation of Gq/11-coupled receptor expressed in primary β cells increased the second messenger IP1 in an accumulation assay. Applying a Gq/11 protein inhibitor completely abolished this signal. Activation of the V1 vasopressin and ghrelin receptors, predominantly expressed in the less abundant alpha and delta cells, was not sufficient to induce a significant IP1 increase in this assay. However, fura-2-based fluorescence imaging showed calcium signals upon application of arginine vasopressin or ghrelin within intact pancreatic islets. Using the here established protocol we were also able to determine changes in intracellular cAMP levels induced by receptors coupling to Gs and Gi/o proteins. Conclusions Detection of the second messengers IP1, cAMP, and calcium, can be used to reliably analyze GPCR activation in intact islets. © The Author(s). 2020.Background Therapeutic potential of low-intensity ultrasound (LIUS) has become evident in various musculoskeletal diseases. We have previously shown that LIUS has an inhibitory effect on local edema in various diseases including the arthritis and brain injury. In this study, we examined whether LIUS can attenuate paw edema formation vis-à-vis vascular permeability and inflammation in rats induced by carrageenan. LIUS with a frequency of 1 MHz and the intensities of 50, 100, or 200 mW/cm2 were exposed on rat paws for 10 min immediately after carrageenan injection. Results Carrageenan injection induced paw edema which was peaked at 6 h and gradually decreased nearly to the initial baseline value after 72 h. LIUS showed a significant reduction of paw edema formation at 2 and 6 h at all intensities tested. The highest reduction was observed at the intensity of 50 mW/cm2. Histological analyses confirmed that LIUS clearly decreased the carrageenan-induced swelling of interstitial space under the paw skin and infiltration of polymorphonuclear leukocytes. Moreover, Evans Blue extravasation analyses exhibited a significant decreases of vascular permeability by LIUS. Finally, immunohistochemical staining showed that expression of pro-inflammatory proteins, namely, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) induced by carrageenan injection was reduced back to the normal level after LIUS stimulation. Conclusions These results provide a new supporting evidence for LIUS as a therapeutic alternative for the treatment of edema in inflammatory diseases such as cellulitis. © The Author(s). 2020.The occurrence of neurodegenerative disease is increasingly raised. From physiopathological aspect, the emergence of auto-reactive antibodies against the nervous system antigens contributes to de-myelination in Multiple sclerosis (MS). These features cause the nervous system dysfunction. The follow-up of molecular alterations could give us a real-state vision about intracellular status during pathological circumstances. In this review, we focus on the autophagic response during MS progression and further understand the relationship between autophagy and MS and its modulatory effect on the MS evolution. The authors reviewed studies published on the autophagy status in neurodegenerative disease and on the autophagy modulation in MS prognosis, diagnosis, and possible therapies. The inevitable role of autophagy was shown in the early-stage progression of MS. Due to critical role of autophagy in different stage of cell activity in nervous system, the distinct role of autophagy should not be neglected in the development, pathogenesis, and treatment of MS. © The Author(s). 2020.Background The urgent problem in the treatment of breast cancer is the recurrence induced by breast cancer stem cells (CSCs). Understanding the role and molecular mechanism of specific molecules in breast cancer stem cells can provide a theoretical basis for better treatment. TRIP6 is an adapter protein which belongs to the zyxin family of LIM proteins and is important in regulating the functions of CSCs. The present study aims to investigate the effects and mechanism of TRIP6 in breast cancer. Methods TRIP6 expression in breast cancer cells and tissues were detected by Real-Time PCR, western blot and immunohistochemistry (IHC). MTT assays, colony formation assays, Xenografted tumor model and mammosphere formation assays were performed to investigate the oncogenic functions of TRIP6 in the tumorigenic capability and the tumor-initiating cell-like phenotype of breast cancer cells in vitro and in vivo. Luciferase reporter, subcellular fractionation and immunofluorescence staining assays were performed to determof breast cancer. © The Author(s) 2020.Background Colorectal cancer (CRC) is one of the most common malignant tumors in the world. Siah E3 ubiquitin protein ligase 1 (Siah1) has been identified as a tumor suppressor gene and plays an important role in the development of malignant tumors. However, the potential role and molecular mechanism of Siah1 in the development and progression of CRC is still unclear. Methods To explore the role and molecular mechanism of Siah1 in the development and progression of CRC, we examined the expression of Siah1 in CRC tissue samples and analyzed its association with progression and prognosis in CRC. In addition, overexpression and knockdown of Siah1 was used to investigate its activity in CRC cells. We also use bioinformatics to analyze and verify the significant roles of Siah1 in critical signaling pathways of CRC. Results We found that the expression of Siah1 was significantly downregulated in CRC tissues, and low expression of Siah1 was associated with aggressive TNM staging and poor survival of CRC patients. Moreover, we revealed that overexpression of Siah1 in CRC cells markedly inhibited CRC cell proliferation and invasion in vitro and in vivo, while knockdown of Siah1 enhanced CRC cell proliferation and invasion.