https://www.selleckchem.com/products/vh298.html p.) or TMZ (25 mg/kg, i. p.) pre-treatment before METH administration could significantly prolong extinction and enhance reinstatement of the reward memory. Notably, DHF treatment after METH administration significantly facilitated extinction and inhibited METH reinstatement, while TMZ treatment resulted in opposite effects. The present study indicated that METH administration could induce a temporal inhibitory effect on HN. More importantly, promotion of HN after the acquisition of METH-associated reward memory, but not inhibition of HN or promotion of HN before the acquisition of reward memory, could facilitate METH extinction and inhibit METH reinstatement, indicating the beneficial effect of HN on METH addiction by erasing the according reward memory.Although several ionic mechanisms are known to control rate and regularity of the slow pacemaker in dopamine (DA) neurons, the core mechanism of pacing is controversial. Here we tested the hypothesis that pacemaking of SNc DA neurons is enabled by an unconventional conductance. We found that 1-(2,4-xylyl)guanidinium (XG), an established blocker of gating pore currents, selectively inhibits pacemaking of DA neurons. The compound inhibited all slow pacemaking DA neurons that were tested, both in the substantia nigra pars compacta, and in the ventral tegmental area. Interestingly, bursting behavior was not affected by XG. Furthermore, the drug did not affect fast pacemaking of GABAergic neurons from substantia nigra pars reticulata neurons or slow pacemaking of noradrenergic neurons. In DA neurons, current-clamp analysis revealed that XG did not appear to affect ion channels involved in the action potential. Its inhibitory effect persisted during blockade of all ion channels previously suggested to contribute to pacemaking. RNA sequencing and voltage-clamp recordings yielded no evidence for a gating pore current to underlie the conductance. However, we could isolate a sma