https://www.selleckchem.com/products/kaempferide.html In this work, we propose a novel autoregressive event time-series model that can predict future occurrences of multivariate clinical events. Our model represents multivariate event time-series using different temporal mechanisms aimed to fit different temporal characteristics of the time-series. In particular, information about distant past is modeled through the hidden state space defined by an LSTM-based model, information on recently observed clinical events is modeled through discriminative projections, and information about periodic (repeated) events is modeled using a special recurrent mechanism based on probability distributions of inter-event gaps compiled from past data. We evaluate our proposed model on electronic health record (EHRs) data derived from MIMIC-III dataset. We show that our new model equipped with the above temporal mechanisms leads to improved prediction performance compared to multiple baselines.The assessment of surgical technical skills to be acquired by novice surgeons has been traditionally done by an expert surgeon and is therefore of a subjective nature. Nevertheless, the recent advances on IoT (Internet of Things), the possibility of incorporating sensors into objects and environments in order to collect large amounts of data, and the progress on machine learning are facilitating a more objective and automated assessment of surgical technical skills. This paper presents a systematic literature review of papers published after 2013 discussing the objective and automated assessment of surgical technical skills. 101 out of an initial list of 537 papers were analyzed to identify 1) the sensors used; 2) the data collected by these sensors and the relationship between these data, surgical technical skills and surgeons' levels of expertise; 3) the statistical methods and algorithms used to process these data; and 4) the feedback provided based on the outputs of these statistical methods