https://www.selleckchem.com/products/Oridonin(Isodonol).html Under acidic conditions, IrO2 exhibits high catalytic activity with respect to the oxygen evolution reaction (OER). However, the practical application of Ir-based catalysts is significantly limited owing to their high cost in addition to the scarcity of the metal. Therefore, it is necessary to improve the efficiency of the utilization of such catalysts. In this study, IrO2-coated Ti felt (IrO2/Ti) electrodes were prepared as high-efficiency catalysts for the OER under acidic conditions. By controlling the surface roughness of the Ti substrate via wet etching, the optimum Ti substrate surface area for application in the IrO2/Ti electrode was determined. Additionally, the IrO2 film that was electrodeposited on the 30 min etched Ti felt had a large surface area and a uniform morphology. Furthermore, there were no micro-cracks and the electrode obtained (IrO2/Ti-30) exhibited superior catalytic performance with respect to the OER, with a mass activity of 362.3 A g Ir - 1 at a potential of 2.0 V (vs. RHE) despite the low Ir loading (0.2 mg cm-2). Therefore, this proposed strategy for the development of IrO2/Ti electrodes with substrate surface control via wet etching has potential for application in the improvement of the efficiency of catalyst utilization with respect to the OER.In this work, gold nanoparticles were biosynthesized via Plectranthus amboinicus leaf extract as the reducing agent. A series of techniques were used for sample analysis. The biosynthesized gold nanoparticles (bAuNPs) are a uniform size with a spherical shape. The FTIR analysis reveals the presence of many oxygen-containing functional groups on the bAuNP surface. The cyclic voltammetry and electrochemical impedance spectroscopic characterizations reveal that while the bAuNPs have a slightly lower conductivity than chemically synthesized AuNPs (cAuNPs). However, the bAuNPs have a superior electrocatalytic performance toward nicotine red