https://www.selleckchem.com/products/h-cys-trt-oh.html Wald tests were used to assess if the coefficients differed across models. Interaction terms were entered in fully adjusted models to determine if associations varied by sex. A significant negative relationship between green space and depressive symptoms was found in the fully adjusted residential- and mobility-based models using the 50 m buffer. No significant differences were observed in coefficients across models. None of the interaction terms were significant. Our results suggest that exposure to green space in the immediate environment, both at home and along the daily mobility path, is associated with a reduction in depressive symptoms. Further research is required to establish the utility of dynamic approaches to exposure assessment in studies on the environment and mental health.The effect and mechanistic evidence of biochar on the (im)mobilization of potentially toxic elements (PTEs) in multi-contaminated soils, with respect to the role of surface-functional groups and organic/inorganic compounds of biochar, are poorly understood. Herein, biochars produced from grass residues, rice straw, and wood were applied to a mining-soil contaminated with As, Cd, Pb, and Zn for 473-d. Biochars did not reduce the mobilization of Cd and Zn, whereas they simultaneously exhibited disparate effects on As and Pb mobilization. The phenolic hydroxyl and carboxylic groups on the wood biochar's surfaces promoted the conversion of Pb2+ into PbCO3/Pb(OH)2 and/or PbO, minimally by the rice and grass biochars. Rice and grass biochars led to the dissolution of scorodite and the formation of less stable forms of Fe-oxide-bound As (i.e., goethite and ferrihydrite); furthermore, it resulted in the reduction of As(V) to As(III). The PTEs mobilization and phytoavailability was mainly governed by the release of dissolved aliphatic- and aromatic-carbon, chloride, sulfur chemistry, phosphate competition, and the electrostatic repulsion