https://www.selleckchem.com/products/otub2-in-1.html Silver and silver nanoparticles are used in several consumer products, particularly sterilizing agents. Ag+ released from the particles causes physiological damages of aquatic organisms. However, the effects of silver on neural and behavioral functions of fish remain unclear. Here, we used zebrafish as a model to investigate the impacts of silver on social, learning and memory behaviors in teleost. Adult zebrafish showed mortality rates of 12.875% and 100% on 72 h exposure to 30 and ≥ 50 ppb of silver nitrate, respectively. Silver accumulation in the brain increased on exposure to 10 and 30 ppb of AgNO3. The physical fitness of the zebrafish, measured by novel tank diving test and swimming performance, decreased after 72 h incubation in 30 ppb of AgNO3. Exposure to 10 ppb of AgNO3 impaired social preference, social recognition, learning, and memory, but did not affect anxiety level, aggressiveness, and shoaling behavior. In situ hybridization of c-fos mRNA showed that AgNO3 treatment decreased neural activity in the brain areas crucial for learning, memory, and social behaviors, including the medial and dorsal zones of the dorsal telencephalic area. In conclusion, 72 h exposure to AgNO3 in a sublethal level impaired learning and social behaviors, indicating neurotoxicity in adult zebrafish.The contamination of aquatic systems with arsenic (As) is considered to be an internationally-important health and environmental issue, affecting over 115 countries globally. Arsenic contamination of aquatic ecosystems is a global threat as it can enter the food chain from As-rich water and cause harmful impacts on the humans and other living organisms. Although different factors (e.g., pH, redox potential, iron/manganese oxides, and microbes) control As biogeochemical cycling and speciation in water systems, the significance of algal species in biotransformation of As is poorly understood. The overarching attribute of this revi