https://www.selleckchem.com/products/Pomalidomide(CC-4047).html However, the relationships between iWUE, water availability, and plant performance did not universally suggest that "conservative" water-use strategies were advantageous in dry years or that "aggressive" strategies were advantageous in wet years. iWUE was positively related to the odds of growth regardless of water availability and to the odds of flowering in dry years, but negatively related to growth rates in dry years. In addition, we found that leaf nitrogen content affected interannual plant performance and that an individual's iWUE plasticity in response to fluctuations in aridity was negatively related to early life drought survival and growth.The reduction in host fitness caused by parasite infections (virulence) depends on infection intensity and the degree of damage caused per parasite. Environmental conditions can shape both virulence components, but in contrast to infection intensity, environmental impacts on per-parasite damage are poorly understood. Here, we studied the effect of ambient temperature on per-parasite damage, which is jointly determined by the ability of parasites to induce harm (per-parasite pathogenicity) and the ability of hosts to limit damage (tolerance). We experimentally exposed two salmonid species, Atlantic salmon (Salmo salar) and sea trout (Salmo trutta), to replicated genotypes of the eye fluke Diplostomum pseudospathaceum. After development of health damage (eye cataracts) in warm water (16 °C) during the first 12 weeks post exposure, we maintained the fish at either 5 °C (cold water) or 16 °C for another 8 weeks and quantified changes in cataracts as a function of parasite load. We found that per-parasite damage was reduced in cold compared to warm water, suggesting that cold temperatures improved host health. Per-parasite damage was also affected by parasite genotype and host species, but these effects did not change with temperature. Our findings suggest that