https://www.selleckchem.com/products/PD-0332991.html Our work sheds new light on computational hardness of FBS by identifying the mathematical connection between BosonSampling with quantum and classical light.We propose and experimentally demonstrate a continuously tunable all-optical microwave filter based on a photonic crystal (PC) L3 cavity. Due to the small cavity mode volume and prominent optical properties, the required power to arouse the cavity nonlinear effects is low as microwatt level. Moreover, the cavity resonance could be continuously shifted by finely adjusting the input powers. Therefore, under optical single sideband modulation, the frequency interval between the optical carrier and cavity resonance could be controllable. In this case, the central frequency of the microwave photonic filter (MPF) could be continuously tuned with low power consumption. To the best of our knowledge, the experimental tuning efficiency of 101.45 GHz/mW is a record for on-chip tunable all-optical microwave filters. With dominant features of all-optical control, ultra-high tuning efficiency (101.45 GHz/mW), large rejection ratios (48 dB) and compact footprint (100 µm2), the proposed silicon nanocavity is competent to process microwave signals, which has many useful applications in on-chip energy-efficient microwave photonic systems.We present integration of singulated micron-sized light emitting diodes (micro-LEDs) directly onto a silicon CMOS drive chip using a transfer printing method. An 8x8 micro-LED device array with individual control over each pixel is demonstrated with modulation bandwidths up to 50 MHz, limited by the large modulation depth of the driver chip. The 2 kHz frame rate CMOS driver also incorporates a Single Photon Avalanche Diode device thus allowing detection and transmission functionality on a single integrated chip. Visible light communications at data rates up to 1 Mbps, and time-of-flight ranging with cm-scale resolution are demonstrated using thi