https://www.selleckchem.com/products/forskolin.html Either inhibition of EZH2 or overexpression of BAI1 could reverse the effects of Lncenc1 overexpression on microglial activation and neuroinflammation. Finally, the Lncenc1-siRNA was intrathecally injected into pSNL mice, and its effects on neuropathic pain were evaluated. Knockdown of Lncenc1 attenuated the development and maintenance of mechanical and thermal hyperalgesia of pSNL mice, accompanied by an increase in BAI1 expression and decrease in inflammatory cytokines. In conclusion, Lncenc1 contributes to neuropathic pain by interacting with EZH2 and downregulating the BAI1 gene in mouse microglia.It has been suggested that the bone marrow microenvironment harbors two distinct populations of mesenchymal stromal cells (MSC), one with a perivascular location and other present in the endosteum. A better understanding of the biology of these MSC subsets has been pursued in order to refine its clinical application. However, most comparative characterizations of mouse MSC have been performed in normoxia. This can result in misleading interpretations since mouse MSC subsets with low/defective p53 activity are known to be selected during culture in normoxia. Here, we report a comprehensive in vitro characterization of mouse MSC isolated from bone marrow (BM-MSC) and compact bone (CB-MSC) expanded and assayed under hypoxia for their morphology, clonogenic efficiency and differentiation capacity. We found that, under hypoxia, compact bone is richer in absolute numbers of MSC and isolation of MSC from compact bone is associated with a reduced risk of hematopoietic cell carryover. In addition, CB-MSC have higher in vitro osteogenic capacity than BM-MSC, while adipogenic differentiation potential is similar. These findings reinforce the hypothesis of the existence of MSC in bone marrow and compact bone representing functionally distinct cell populations and highlight the compact bone as an efficient source of murine MSC und