https://www.selleckchem.com/products/gsk467.html Salinity is one of the most significant environmental stresses for sustainable crop production in major arable lands of the globe. Thus, we conducted experiments with 27 tomato genotypes to screen for salinity tolerance at seedling stage, which were treated with non-salinized (S1) control (18.2 mM NaCl) and salinized (S2) (200 mM NaCl) irrigation water. In all genotypes, the elevated salinity treatment contributed to a major depression in morphological and physiological characteristics; however, a smaller decrease was found in certain tolerant genotypes. Principal component analyses (PCA) and clustering with percentage reduction in growth parameters and different salt tolerance indices classified the tomato accessions into five key clusters. In particular, the tolerant genotypes were assembled into one cluster. The growth and tolerance indices PCA also showed the order of salt-tolerance of the studied genotypes, where Saniora was the most tolerant genotype and P.Guyu was the most susceptible genotype. To investigate the possible biochemical basis for salt stress tolerance, we further characterized six tomato genotypes with varying levels of salinity tolerance. A higher increase in proline content, and antioxidants activities were observed for the salt-tolerant genotypes in comparison to the susceptible genotypes. Salt-tolerant genotypes identified in this work herald a promising source in the tomato improvement program or for grafting as scions with improved salinity tolerance in tomato.The neurotensin is a tridecapeptide involved in the proliferation of colon cancer, the overexpression of neurotensin receptors occurring at an early stage development of many tumours. Targeting neurotensin receptors by using the same biological active molecule is an effective approach for both imaging quantification and treatment. The present work aimed to demonstrate the ability of radiolabelled neurotensin to specifically target colo