https://www.selleckchem.com/products/citarinostat-acy-241.html Two structurally novel meroterpenoids, ganodermaones A (1) and B (2), were isolated from Ganoderma fungi (G. cochlear and G. lucidum). The structures of 1 and 2 were assigned by spectroscopic, computational, and X-ray diffraction methods. Compounds 1 and 2 represent the first examples of meroterpenoids in Ganoderma fungal species featuring with carbon migration. The plausible biosynthetic pathway for 1 was proposed. Biological evaluation showed that both 1 and 2 could inhibit renal fibrosis in TGF-β1-induced kidney proximal tubular cells.Acute mountain sickness (AMS) affects approximately 25-50% of newcomers to high altitudes. Two human carbonic anhydrase isoforms, hCA I and II, play key roles in developing high altitude illnesses. However, the only FDA-approved drug for AMS is acetazolamide (AAZ), which has a nearly 100 times weaker inhibitory activity against hCA I (Ki = 1237.10 nM) than hCA II (Ki = 13.22 nM). Hence, developing potent dual hCA I/II inhibitors for AMS prevention and treatment is a critical medical need. Here we identified N-quinary heterocycle-4-sulphamoylbenzamides as potent hCA I/II inhibitors. The newly designed compounds 2b, 5b, 5f, 6d, and 6f possessed the desired inhibitory activities (hCA I Ki = 16.95-52.71 nM; hCA II Ki = 8.61-18.64 nM). Their hCA I inhibitory capacity was 22- to 76-fold stronger than that of AAZ. Relative to the control group for survival in a mouse model of hypoxia, 2b and 6d prolonged the survival time of mice by 21.7% and 29.3%, respectively, which was longer than those of AAZ (6.5%). These compounds did not display any apparent toxicity in vitro and in vivo. In addition, docking simulations suggested that the quinary aromatic heterocycle groups stabilised the interaction between hCA I/II and the inhibitors, which could be further exploited in structure optimization studies. Hence, future functional studies may confirm 2b and 6d as potential clinical candid