https://www.selleckchem.com/Androgen-Receptor.html Opioid receptors (ORs) are among the best-studied G protein-coupled receptors due to their involvement in neurological disorders and important role in pain treatment. Contrary to the classical monomeric model, indirect evidence suggests that ORs might form dimers, which could be endowed with a distinct pharmacological profile, and, thus, be targeted to develop innovative pharmacological therapies. However, direct evidence for the spontaneous formation of OR dimers in living cells under physiological conditions is missing. Despite a growing interest in the κ opioid receptor (KOR), KOR-selective fluorescent probes are particularly scarce in the literature. Herein, we present the first set of fluorescent KOR-selective probes with antagonistic properties. Two of these were employed in single-molecule microscopy (SMM) experiments to investigate KOR homodimerization, localization, and trafficking. Our findings indicate that most KORs labeled with the new fluorescent probes are present as apparently freely diffusing monomers on the surface of a simple cell model.With the increasing demand for comfort, thinness, and warmth of fabrics, various functional fibers have emerged. However, natural silkworm silk, as one of the most widely used natural fibers in textile, faces the issue that it cannot be modified during the spinning process like synthetic fibers. Herein, copper sulfide nanoparticles (CuS NPs) with a near-infrared (NIR) absorption property were first prepared by using regenerated silk fibroin (RSF) as the biological template. Then, trace CuS NPs prepared in RSF solution (no more than 100 ppm) were added into the RSF spinning dope to prepare colorless RSF/CuS hybrid fibers via wet-spinning process. The tensile test of the RSF/CuS hybrid fibers showed that the toughness was improved with the addition of CuS NPs, which completely met the requirements of textile development. The temperature of RSF/CuS hybrid fiber bundle