These findings provide a new mechanism for the renoprotective effects of metformin.3-Hydroxy-3-methyl-glutaryl-co-enzyme-A (HMG-CoA) reductase inhibitors (statins) are popularly used for the treatment of obesity and hypercholesterolemia with established safety profile. Statins exhibits a wide range of neurobehavioral effects in addition to their peripheral actions, and may be beneficial in treatment of psychiatric conditions. Present study investigated the role of agmatine and imidazoline receptors in antidepressant-like effect of statins in mouse forced swimming test (FST). The antidepressant-like effect of atorvastatin (5 mg/kg, p.o.) and simvastatin (10 mg/kg, p.o.) was potentiated by pretreatment with agmatine (5 mg/kg, i.p.) as well as the drugs known to increase endogenous agmatine levels in brain viz., L-arginine (40 μg/mouse, i.c.v.), an agmatine biosynthetic precursor; arcaine (50 μg/mouse, i.c.v), agmatinase inhibitor; and aminoguanidine (6.5 μg/mouse, i.c.v.), a diamine oxidase inhibitor. Further, both the statins increased agmatine levels within hippocampus and prefrontal cortex. Conversely, prior administration of I1 receptor antagonist, efaroxan (1 mg/kg, i.p.) and I2 receptor antagonist, idazoxan (0.25 mg/kg, i.p.) blocked the antidepressant-like effect of statins and their synergistic combination with agmatine. These results demonstrate the involvement of agmatine and imidazoline receptors in antidepressant-like effect of statins and suggest as a potential therapeutic target for the treatment of depressive disorders.Multidrug resistance (MDR) counteracts the efficiency of sorafenib, an important first-line therapy for hepatocellular carcinoma (HCC). Sirtuins (SIRTs) 1 and 2 are associated with tumor progression and MDR. We treated 2D and 3D cultures (which mimic the features of in vivo tumors) from HCC cells with sorafenib alone or in the presence of SIRTs 1 and 2 inhibitors (cambinol or EX-527; combined treatments). Cultures subjected to combined treatments showed a greater fall in cellular viability, proliferation (PCNA, cyclin D1 and Ki-67 expression and cell cycle analysis), migration and invasion when compared with cultures treated only with sorafenib. https://www.selleckchem.com/products/gyy4137.html Similarly, combined treatments produced more apoptosis (annexin V/PI, caspase-3/7 activity) than sorafenib alone. Since cell cycle dysregulation and apoptotic blockage are reported mechanisms of MDR, the modulation found in PCNA, cyclin D1, Ki-67 and caspase-3/7 proteins by cambinol and EX-527 are probably playing a role in enhancing the sensitivity of HCC cell lines to sorafenib. EX-527 reduced MRP3 and BCRP expression in sorafenib-treated HCC cells. Since ABC transporters contribute to MDR, MRP3 and BCRP could be also influencing in the response of HCC cells to sorafenib. Overall, 2D and 3D cultures behave similarly except that 3D cultures were less sensitive to treatments, reinforcing the clinical relevance of the current study. Findings presented in this manuscript support a potential application for SIRTs 1 and 2 inhibitors since we demonstrated that these compounds enhance the inhibitory effect of sorafenib upon treatment of hepatocellular carcinoma cells lines.Perioperative neurocognitive disorder (PND) is a common complication of elderly patients after surgery and lacks effective prevention and treatment measures. We investigated the effect and mechanism of gastrodin (GAS), a natural plant ingredient, on postoperative cognition induced by laparotomy in aged mice. Male aged (18 months) mice were subjected to laparotomy and orally treated with GAS (25, 50, and 100 mg/kg) 3 weeks before surgery and 1 week after surgery. In addition, some male aged (18 months) mice were subjected to viral vector or GSK-3β expression virus injection followed by laparotomy with or without 100 mg/kg GAS treatment. GAS improved learning and memory in aged mice after surgery. Surgery increased the levels of pro-inflammatory factors (TNF-α, IL-1β and IL-6) and decreased the level of an anti-inflammatory factor (IL-10) in the mouse hippocampus, and these changes were reversed by GAS treatment. GAS also suppressed the activation of microglia. GAS inhibited the phosphorylation of GSK-3β and Tau. Furthermore, surgery induced more serious cognitive dysfunction, inflammatory factors, activation of microglia, and phosphorylation of GSK-3β and Tau in GSK-3β overexpressing aged mice. The improvement of learning and memory, the reduction of inflammation and microglia activation, and the suppression of GSK-3β and Tau phosphorylation by GAS were prevented when GSK-3β was overexpressed in aged mice subjected to surgery. Our finding suggested that GAS exerts neuroprotective effects in aged mice subjected to laparotomy by suppressing neuroinflammation and GSK-3β and Tau phosphorylation. Thus, these findings suggest that GAS may be a promising agent for PND.The rhizome of the plant Atractylodes macrocephala Koidz is the major constituent of the Traditional Chinese Medicine Baizhu, frequently used to treat gastro-intestinal diseases. Many traditional medicine prescriptions based on Baizhu and the similar preparation Cangzhu are used in China, Korea and Japan as Qi-booster. These preparations contain atractylenolides, a small group of sesquiterpenoids endowed with antioxidant and anti-inflammatory properties. Atractylenolides I, II and III also display significant anticancer properties, reviewed here. The capacity of AT-I/II/IIII to inhibit cell proliferation and to induce cancer cell death have been analyzed, together with their effects of angiogenesis, metastasis, cell differentiation and stemness. The immune-modulatory properties of ATs are discussed. AT-I has been tested clinically for the treatment of cancer-induced cachexia with encouraging results. ATs, alone or combined with cytotoxic drugs, could be useful to treat cancers or to reduce side effects of radio and chemotherapy. Several signaling pathways have been implicated in their multi-targeted mechanisms of action, in particular those involving the central regulators TLR4, NFκB and Nrf2. A drug-induced reduction of inflammatory cytokines production (TNFα, IL-6) also characterizes these molecules which are generally weakly cytotoxic and well tolerated in vivo. Inhibition of Janus kinases (notably JAK2 and JAK3 targeted by AT-I and AT-III, respectively) has been postulated. Information about their metabolism and toxicity are limited but the long-established traditional use of the Atractylodes and the diversity of anticancer effects reported with AT-I and AT-III should encourage further studies with these molecules and structurally related natural products.