https://www.selleckchem.com/products/ionomycin.html The impact of selective predation of weaker individuals on the general health of prey populations is well-established in animal ecology. Analogous processes have not been considered at microbial scales despite the ubiquity of microbe-microbe interactions, such as parasitism. Here we present insights into the biotic interactions between a widespread marine thraustochytrid and a diatom from the ecologically important genus Chaetoceros. Physiological experiments show the thraustochytrid targets senescent diatom cells in a similar way to selective animal predation on weaker prey individuals. This physiology-selective targeting of 'unhealthy' cells appears to improve the overall health (i.e., increased photosynthetic quantum yield) of the diatom population without impacting density, providing support for 'healthy herd' dynamics in a protist-protist interaction, a phenomenon typically associated with animal predators and their prey. Thus, our study suggests caution against the assumption that protist-protist parasitism is always detrimental to the host population and highlights the complexity of microbial interactions.Surface-attached microbial communities constitute a vast amount of life on our planet. They contribute to all major biogeochemical cycles, provide essential services to our society and environment, and have important effects on human health and disease. They typically consist of different interacting genotypes that arrange themselves non-randomly across space (referred to hereafter as spatial self-organization). While spatial self-organization is important for the functioning, ecology, and evolution of these communities, the underlying determinants of spatial self-organization remain unclear. Here, we performed a combination of experiments, statistical modeling, and mathematical simulations with a synthetic cross-feeding microbial community consisting of two isogenic strains. We found that two different pat