https://www.selleckchem.com/CDK.html Therapeutic antibodies targeting the CTLA4/PD-1 pathways have revolutionized cancer immunotherapy by eliciting durable remission in patients with cancer. However, relapse following early response, attributable to primary and adaptive resistance, is frequently observed. Additional immunomodulatory pathways are being studied in patients with primary or acquired resistance to CTLA4 or PD-1 blockade. The DNAM1 axis is a potent coregulator of innate and adaptive immunity whose other components include the immunoglobulin receptors TIGIT, PVRIG, and CD96, and their nectin and nectin-like ligands. We review the basic biology and therapeutic relevance of this family, which has begun to show promise in cancer clinical trials. SIGNIFICANCE Recent studies have outlined the immuno-oncologic ascendancy of coinhibitory receptors in the DNAM1 axis such as TIGIT and PVRIG and, to a lesser extent, CD96. Biological elucidation backed by ongoing clinical trials of single-agent therapy directed against TIGIT or PVRIG is beginning to provide the rationale for testing combination regimens of DNAM1 axis blockers in conjunction with anti-PD-1/PD-L1 agents.Recently, the phase II HUDSON trial demonstrated the feasibility of testing multiple immunotherapy-based combinations simultaneously, with biomarker-driven treatment matching where possible, in patients with non-small cell lung cancer. The study provides an example of how novel trial designs can improve the efficiency of drug testing.Epigenetic regulators are a class of promising targets in the combination with immune checkpoint inhibitors for cancer treatment, but the impact of the broad effects of perturbing epigenetic regulators on tumor immunotherapy remains to be fully explored. Here we show that ablation of the histone demethylase LSD1 in multiple tumor cells induces TGF-B expression, which exerts an inhibitory effect on T cell immunity through suppressing the cytotoxicity of intratumoral CD8+ T c