https://www.selleckchem.com/products/abtl-0812.html Glioblastoma multiforme (GBM) is the most malignant brain tumor. Hypoxic condition is a predominant feature of the GBM contributing to tumor growth and resistance to conventional therapies. Hence, the identification of drugs able to impair GBM malignancy and aggressiveness is considered of great clinical relevance. Previously, we demonstrated that the activation of M2 muscarinic receptors, through the agonist arecaidine propargyl ester (Ape), arrests cell proliferation in GBM cancer stem cells (GSCs). In the present work, we have characterized the response of GSCs to hypoxic condition showing an upregulation of hypoxia-inducible factors and factors involved in the regulation of GSCs survival and proliferation. Ape treatment in hypoxic conditions is however able to inhibit cell cycle progression, causing a significant increase of aberrant mitosis with consequent decreased cell survival. Additionally, qRT-PCR analysis suggest that Ape downregulates the expression of stemness markers and miR-210 levels, one of the main regulators of the responses to hypoxic condition in different tumor types. Our data demonstrate that Ape impairs the GSCs proliferation and survival also in hypoxic condition, negatively modulating the adaptive response of GSCs to hypoxia.A zeolite imidazole framework (ZIF-67) was assembled onto the surface of ammonium polyphosphate (APP) for preparing a series multifunctional flame-retardant APP-ZIFs. The assembly mechanism, chemical structure, chemical compositions, morphology, and specific surface area of APP-ZIFs were characterized. The typical APPZ1 and APPZ4 were selected as intumescent flame retardants with dipentaerythritol (DPER) because of their superior unit catalytic efficiency of cobalt by thermogravimetric analysis. APPZ1 and APPZ4 possessed 6.8 and 92.1 times the specific surface area of untreated APP, which could significantly enhance the interfacial interaction, mechanical properties, a