https://www.selleckchem.com/products/atn-161.html Influencing factors that effect the photocatalytic efficiency of dyes, such as catalyst dose, dyes concentration, time, and the light source was also studied. More importantly, after five catalytic cycles, no evident deactivation was observed, suggesting the satisfactory stability of the investigated photocatalyst. Also, large numbers of superoxides radicals form which is the main active species participate in the degradation of acid black were analyzed using a radical trapping experiment. It is expected that our work could render navigated information for steering toward the design and applications of the CoCrFeO4-based photocatalyst with sun-light utilization for environmental remediation. V.Ab initio BMC-CCSD//B3LYP calculations of the potential energy surfaces (PESs) are associated with the rate constants and branch ratio of products by means of RRKM theories to research the mechanism and product distribution of the CFCl2CH2O2 with Cl reaction. The singlet and triplet PESs of this reaction have been calculated. Addition/elimination and SN2 displacement mechanisms are located on the singlet PES, and SN2 displacement and H-abstraction are located on the triplet PES. P1 (CFCl2CHO + HClO) are expected to the primary products at T ≤ 2400 K, which is by original barrierless Cl addition to the terminal-O atom in CFCl2CH2O2 and then eliminate HClO molecule, and the branch ratio of products rely on collision energy. The H-abstraction products on the triplet PES are the dominant products at higher temperatures. At 298 and 500 K, the total rate constants are not subject to pressure, conversely, the total rate constants presented typical falloff behavior at 1000 and 3000 K. The atmospheric lifetime of CFCl2CH2O2 in Cl is around one day. TD-DFT computations imply that IM1 (CFCl2CH2OOCl) and IM2 (CFCl2CH2OClO) will photolyze under the sunlight. The mechanical, magnetic and thermoelectric properties of spin polarized XGaO3 (X =