https://www.selleckchem.com/products/rp-6306.html Emulsion gels with low oil contents have been continuously developed in recent decades. In this study, the use of high-intensity ultrasound for the preparation of low oil emulsion gel (oil fraction of 0.25) was investigated. Specifically, defatted Antarctic krill protein (dAKP) was used to stabilize the interface of soybean oil and water. Then, the microstructure and the stabilization mechanism of the formed emulsion gel were evaluated by cryo-SEM, CLSM, zeta potential, rheological measurements, and FTIR. Besides, the particle diameter was measured to be around 5 μm. The results of CLSM indicated that the emulsion gel was the oil-in-water type. The emulsion gel exhibited gel-like viscoelastic behavior even at a low concentration of dAKP due to the formation of a rigid particle network while the rheological behavior of the emulsion gel was significantly affected by the concentration of dAKP. The stabilization of the emulsion gel can be maintained by space steric hindrance and hydrophobic interactions between particles in the emulsion gel system. Lung cancer is the leading cause of cancer related death worldwide. Accurate molecular diagnostics from a tumor biopsy is paramount for correct diagnosis, treatment strategy, and prediction of outcome. However, a tumor biopsy can be misleading due to tumor heterogeneity and consecutive biopsies are rarely achievable. Importantly, tumor-specific genetic information concerning mutations and translocations, can also be obtained from liquid biopsies, e.g. blood plasma, containing cell-free DNA (cfDNA) with both systemic and tumor origin. Tumor-specific gene-expression information can also be determined from liquid biopsies using cfDNA methylation and cell-free RNA analyses. However, supplementary methodologies that can determine gene-expression patterns in lung tumors from liquid biopsies could also have diagnostic impact. We here present the method cell-free chromatin Immunopreci