https://www.selleckchem.com/products/3-aminobenzamide.html Five consecutive regeneration cycles verified an excellent reusability for 1S-BC. The overall results allow to conclude that the FeCl3 modification of the biochar obtained from Tribulus terrestris plant biomass could give an efficient alternative adsorbent for U(VI) removal in a variety of environmental conditions, promoting protection of the environment and human health, as well as facilitating resource utilization and sustainable management of the materials studied.Ibuprofen (IBP) is a non-steroidal anti-inflammatory drug released into the environment through hospital and medical effluents, pharmaceutical wastewater and veterinary use. The aim of this paper is to review the empirical findings on the adsorption of IBP from aqueous media. A preliminary ecotoxicological assessment confirmed the environmental risk of IBP in the aqueous environment. Open literature works considered in this review were for the past decade (2010-2020). Carbon-based adsorbents are the best class of adsorbent for the uptake of IBP and the highest reported maximum adsorption capacity (qmax) for IBP is 496.1 mg/g by SWCNTs. The range of adsorption capacities for IBP uptake in this review is between 0.0496 and 496.1 mg/g. The mechanism of uptake is majorly by hydrophobic interactions, π - π stacking, hydrogen bonds, electrostatic interactions and dipole-dipole interaction. IBP uptake was best fit to a wide variety of isotherm models but was well suited to the pseudo-second order kinetics model. The thermodynamics of IBP uptake depends majorly on the nature of the adsorbent and desorption from the solid phase is based on an appropriate choice of the eluent. Knowledge gaps were observed in used adsorbent disposal and process improvement. In the future, interest would increase in scale-up, industrial applications and practical utilisation of the research findings which would help in sustainable water resource management.Currently used fo