https://www.selleckchem.com/products/bms-986158.html Over the last two decades, the development and production of innovative, customer-tailored food products with enhanced health benefits have seen major advances. However, the manufacture of edible materials with tuned physical and organoleptic properties requires a good knowledge of food microstructure and its relationship to the macroscopic properties of the final food product. Food products are complex materials, often consisting of multiple phases. Furthermore, each phase usually contains a variety of biological macromolecules, such as carbohydrates, proteins and lipids, as well as water droplets and gas bubbles. Micronutrients, such as vitamins and minerals, might also play an important role in determining and engineering food microstructure. Considering this complexity, highly advanced physio-chemical techniques are required for characterizing the microstructure of food systems prior to, during and after processing. Fast, in situ techniques are also essential for industrial applications. Due to the wide variety of instruments and methods, the scope of this paper is focused only on the latest advances of selected food characterization techniques, with emphasis on soft, multi-phasic food materials. Fecal coliform bacteria are a key indicator of human health risks; however, the spatiotemporal variability and key influencing factors of river fecal coliform have yet to be explored in a rural-suburban-urban watershed with multiple land uses. In this study, the fecal coliform concentrations in 21 river sections were monitored for 20 months, and 441 samples were analyzed. Multivariable regressions were used to evaluate the spatiotemporal dynamics of fecal coliform. The results showed that spatial differences were mainly dominated by urbanization level, and environmental factors could explain the temporal dynamics of fecal coliform in different urban patterns except in areas with high urbanization levels. Reducing susp